AI(人工知能)は第4次産業革命の中核を担う技術として、社会のさまざまな分野でその存在感を増しています。
生産効率の向上、ビッグデータの分析、サービスの高度化など、AIの活用は経済成長と社会問題の解決に直結しています。
その担い手となるAI人材は、日本経済の持続的な発展に不可欠な存在です。
一方で、日本では少子高齢化が進む中、AI人材の需要が急増し、2030年には約12万人の不足が見込まれています。
この問題を放置すれば、AIを活用したイノベーションや競争力の低下が懸念されます。この記事では、そんなAI人材不足の現状、背景、そして解決策を解説します。
これらに当てはまる方におすすめの記事となっています。これを読めばAI人材不足について、具体的な解決策が丸わかりですよ。
AI技術の導入は、製造業やサービス業、医療、金融などの幅広い分野で価値を生み出しています。
たとえば、製造業では生産ラインの自動化や品質管理の効率化、医療分野では診断支援や新薬開発の加速が実現されています。
このように、AI人材は産業革新を牽引する役割を担っています。
経済産業省の調査によると、日本のIT人材不足は全体で約79万人に達し、そのうちAI人材の不足は特に深刻です。
AIやデータサイエンス、IoT(モノのインターネット)などの先端技術に対応できる専門家が不足しており、2030年には約12万人に達すると予測されています。
AI技術の急速な進歩と、それに伴う需要の急増にあります。近年、第4次産業革命を背景に、AI、ビッグデータ、IoTといった先端技術を活用する新しいビジネスが急成長しています。
これにより、生産性の向上や付加価値の創出が期待され、AIを中心としたIT人材の確保が急務となっています。
特に、Deep Learning(深層学習)の登場やコンピューティングパワーの飛躍的な向上により、AI分野での革新が加速しています。
この技術進歩は、企業にとって新たな市場開拓や業務効率化の大きなチャンスとなっています。
その結果、AI技術を研究・開発し、それを実際に導入・運用するための人材需要が急増しました。
AI人材は、その役割によってサイエンス系、エンジニアリング系、ビジネス系の3つに区分されます。
サイエンス系では、AIアルゴリズムや理論の研究を担う専門家が必要とされます。一方、エンジニアリング系では、AIモデルを実装し、システムやアプリケーションとして運用可能な形にする技術者が求められています。
さらに、ビジネス系では、AIの適用可能性を評価し、具体的なビジネス企画に結びつけるプランナーの需要も高まっています。
このように、AIの普及が進む中で、さまざまな専門スキルを持つ人材が必要とされています。
日本における労働力人口は、少子高齢化の影響を受けて減少し続けており、この人口動態がIT人材の供給に大きな影響を与えています。
労働力人口の減少は、若年層の人口減少に直結しています。日本では、少子化の影響により、18歳から24歳の若者の数が減少しています。
この層は、IT業界における新卒人材の主な供給源であるため、IT人材の確保がますます難しくなっています。
また、少子高齢化により、60歳以上の高齢者人口が増加しており、IT業界ではこの世代の労働力活用も課題となっています。
高齢者の労働参加率が上昇しているものの、彼らがIT技術を習得し、現場で活躍できるレベルの人材となるには時間と投資が必要です。
一方、2030年のIT人材供給に関する試算結果では、新卒人材の増加がIT人材数の増加に寄与するものの、年齢分布が偏る傾向にあります。
2020年には、40歳から44歳の層が最も多く、若年層(30歳未満)の割合は低下していることが示されています。このことは、現在のIT人材市場における課題を象徴しています。
新卒からの人材供給は増加傾向にあるものの、それに伴い、特に40代以上の中堅層が増加し、若年層のIT人材の割合が相対的に減少しているため、企業の成長や競争力を支えるための若手技術者の確保が急務となっています。
さらに、IT人材の年齢分布を見てみると、若手層の重要性が増す一方で、50歳以上の層が高い割合を占めており、この年齢層の労働力の活用が重要なテーマとなっています。
若年層の流入が増える2030年には、IT人材市場において新たな世代が主流となり、25歳から34歳の若手層が活躍することになりますが、一方で、高齢層の活躍も期待されています。
特に、IT技術の高度化が進む中で、既存の労働力を如何にして技術に対応させ、活用するかが今後の課題です。
近年、IT分野への新卒者数は増加傾向にありますが、少子化による新卒者総数の減少や、大学・大学院の教育キャパシティの限界を考えると、さらなる増加は容易ではありません。
しかし、初等中等教育や高等教育を通じたIT教育の充実が、その解決に寄与します。2020年から小学校、2021年から中学校で開始されたプログラミング教育は、若年層がITスキルを身につけるきっかけとなります。
これにより、論理的思考力を備えた人材が育ち、2030年に労働市場へ参入する際には、IT人材供給の質的向上も期待されます。
高等教育では、AIやデータサイエンスの高度な学びを提供し、実践的スキルを身につける場を拡充することが求められます。
産学連携やオンライン教育の活用も、新たな学びの形として有効です。これらの教育を受けた新卒者は、IT業界だけでなく、幅広い産業分野で生産性向上やイノベーションを推進する力となります。
新卒人材の供給力強化は、AI人材不足解消の鍵であり、AI時代を支える基盤構築に直結します。
AI人材不足の課題解決には、大学や大学院などの教育機関が果たす役割が重要です。
近年、多くの大学でAIやデータサイエンスに特化した学部や研究科が新設され、供給力を高める動きが進んでいます。
たとえば、滋賀大学では2017年にデータサイエンス学部を設置し、年間100名の定員を設けています。
また、東京農工大学や横浜市立大学、武蔵野大学などでも同様の新設が行われており、AI分野の教育が活性化しています。これらの動きにより、AI技術者やデータサイエンティストの供給が中長期的に増加すると期待されています。
供給力向上の具体策として、新設学部や大学院の定員増加があります。試算によれば、これらの新設によるAI人材供給の増加は、学部卒業生の修士課程への進学率(約37.6%)や、学部卒業から修士課程修了までの期間(約6年)を考慮して段階的に反映されます。
この動向が継続すれば、2030年には大学から供給されるAIエンジニアの数が大幅に増加し、需給ギャップの縮小につながると見込まれています。
特に、修士課程の新設や定員拡充は、高度なスキルを持つAI人材の輩出に直接的な効果をもたらします。
たとえば、研究科新設により、修了時には約2年で即戦力となるAIエンジニアが労働市場に供給されます。
この供給増が持続可能であれば、AI技術の進展に対応した人材の安定的な確保が可能となります。教育機関での取り組みは、量的な増加だけでなく、質の向上にも寄与します。
特に、AI分野の学術研究を通じて学生が高度な専門知識を習得し、それを実社会で応用することで、産業全体のイノベーションを加速させる効果が期待されています。
AI人材不足を解消するためには、大学による人材供給力の強化だけでなく、企業内部でのAI人材の育成と確保が欠かせません。
AI技術の需要が高まる中で、企業内でのスキル転換や育成プログラムを通じて人材の質と量を補う取り組みが重要です。
特に、既存のIT人材を対象にAIに関するスキルを習得させることで、企業内でAIエンジニアを育成することが可能です。
AIエンジニアには、AIモデルやその背景技術を理解し、それをソフトウェアやシステムとして実装する能力が求められます。
既存のAIライブラリを活用したソフトウェア開発も含め、これらのスキルは、従来型IT人材が短期的な研修やオンザジョブトレーニングを通じて習得できる範囲です。
こうした取り組みを企業が積極的に進めることで、AI人材不足の解消に寄与します。
一方、AIサイエンティストの育成は難易度が高い課題です。高度な数学的知識や学術的素養が必要とされるため、企業内での短期的な育成は難しく、大学や研究機関との連携が求められます。
これに対し、AIプランナーは、技術的な知識だけでなくビジネス企画能力も必要であり、その育成方法が確立されていません。企業はAI活用を推進する上で、この分野の教育プログラムを開発し、早急に実施する必要があります。
さらに、AI教育の普及を加速するため、企業は外部リソースの活用も検討すべきです。
オンライン教育や専門機関との協力により、最新技術に関する知識を柔軟に学べる環境を整えることが有効です。
また、企業内でAI技術を導入・推進するリーダーシップ層を育てることで、組織全体でAI活用を促進できます。
いかがでしたか。本日は2030年のAI人材不足に関して、その概要や原因と解決策について解説していきました。
AI人材不足は、単に技術の問題にとどまらず、経済全体の成長や競争力に影響を与える重大な課題です。
教育の強化、多様な人材の活用、国際的な協力を通じて、この問題に取り組むことが求められます。
AI時代における競争力を高めるためには、迅速かつ柔軟な対応が必要です。企業や教育機関、政府が一体となり、未来を担うAI人材の育成に向けた取り組みを加速させるべきです。
ビジネスや社会のあらゆる場面でシステムが欠かせない現代において、システム開発を効率的かつ確実に進めるための枠組みとして「システム開発ライフサイクル(SDLC:System Development Life Cycle)」が存在します。 SDLCは、システムを企画・開発・運用・保守するまでの一連の流れを定義したもので、開発プロジェクトを成功させるための道しるべといえます。 この記事では、システム開発ライフサイクルの基本的な考え方と、主要な開発フェーズ、さらに代表的な開発モデルについて解説します。 システム開発を発注・管理する立場の方 IT人材が不足している方 システム開発ライフサイクルの具体的内容が知りたい方 これらに当てはまる方におすすめの記事となっています。これを読めばシステム開発を効率的に進める方法が丸わかりですよ。 (more…)
システム開発が完了した後、安定して稼働させるためには「システム保守」が欠かせません。 しかし実際に見積もりを取ると、費用が高いと感じる企業も多いのではないでしょうか。 この記事では、システム保守の費用相場を解説するとともに、コストを抑えるための具体的な方法を徹底的に紹介します。 これから保守契約を検討する方 すでに保守契約しているが見直したい方 システム保守の費用について知りたい方 これらに当てはまる方におすすめの記事となっています。これを読めばシステム保守にいくらかかるのかや、費用を抑えるためのポイントも丸わかりですよ。 (more…)
2017年の起業から今まで、DEHA SOLUTIONSが歩んできた9年間は、お客様と社員の皆様からのご支援とご協力なくしては語ることができません。心より感謝申し上げます。 私たちはこの間、ベトナムを開発拠点とするシステム開発企業として、日本国内のIT市場向け様々な課題に真摯に向き合ってまいりました。2019年に発表された経済産業省によるIT人材需給に関する調査によると、2030年の日本国内におけるIT人材は最大で約79万人が不足すると予測されています。この深刻な状況の中、多くのSIer企業様や中小・大企業様の開発パートナーとしては、高品質で開発及びソリューションを安定的に提供することで、日本のIT業界の成長を支える一翼を担っています。 >>関連記事:日本経済産業省によると2030年には最大で約79万人のIT人材が不足 近年、ビジネス環境は急速に変化し、DXの波が隅々にまで浸透することに加え、AI技術も全産業を席巻しています。DEHAマガジンでも度々記事を取り上げてきたように、現在AIは単なるトレンドではなく、未来の社会を形作る基盤となりつつあります。 そんな大きな時代の変化を捉え、私たちDEHA SOLUTIONSはこれまでの9年間で培ってきた豊富なナウハウで、AI分野に注力を決意しました。単なる技術ベンダに留まらずに、お客様にとって最も信頼性があるAI総合ソリューション開発パートナーとしては、共に課題解決及びビジネス発展にしていくことを目指してまいります。 (more…)
開発の現場では「人が足りない」「スキルが合わない」「今すぐ増強したい」が日常茶飯事です。 そこでこの記事では、①オフショア開発 ②ニアショア開発 ③フリーランス・業務委託 ④SES ⑤社内のリソース強化(社員育成・ノーコード/ローコード・AI活用)の5つ手段を、スピード/コスト/品質確保/管理負荷/機密性/拡張性で徹底比較し、選び方の指針まで一気通貫で整理します。 開発を効率化させたい方 社内のIT人材が不足している方 これらに当てはまる方におすすめの記事となっています。これを読めば開発リソースを確保するためのそれぞれの手段について、特徴がわかりますよ。 (more…)
近年、IT人材不足が深刻化する日本市場では、オフショア開発の活用がますます一般的になっています。 なかでも、ベトナムは高い技術力とコスト競争力を兼ね備えた国として、依然として人気を維持しています。 この記事では、2025年最新のベトナムオフショア開発における人月単価相場を役割別に解説し、最新動向までを詳しくご紹介します。 ベトナムオフショアに興味がある方 開発コストを抑えたいとお考えの方 社内のIT人材が不足している方 これらに当てはまる方におすすめの記事となっています。これを読めばベトナムオフショアの具体的なコストがわかりますよ。 (more…)
2025年8月時点におけるドル/円(USD/JPY)の為替レートは、およそ ¥146.9です。 円安傾向は続いており、過去数十年のトレンドとも重なりつつ、依然として投資・政策動向から注目を浴びています。 この記事ではそんな円安に着目してオフショア開発に与える影響を見ていこうと思います。 オフショア開発を始めたい方 社内のIT人材が不足している方 開発効率を上げたい方 これらに当てはまる方におすすめの記事となっています。これを読めばオフショア開発に円安がどう影響するのかがわかるのはもちろん、いつ始めるべきかまで丸わかりですよ。 (more…)