オフショア開発

2030年のAI人材は12万人まで不足する見込み〜解決法は?

AI(人工知能)は第4次産業革命の中核を担う技術として、社会のさまざまな分野でその存在感を増しています。

生産効率の向上、ビッグデータの分析、サービスの高度化など、AIの活用は経済成長と社会問題の解決に直結しています。

その担い手となるAI人材は、日本経済の持続的な発展に不可欠な存在です。

一方で、日本では少子高齢化が進む中、AI人材の需要が急増し、2030年には約12万人の不足が見込まれています​。

この問題を放置すれば、AIを活用したイノベーションや競争力の低下が懸念されます。この記事では、そんなAI人材不足の現状、背景、そして解決策を解説します。

  • AI人材に興味がある方
  • 人材不足にお悩みの方

これらに当てはまる方におすすめの記事となっています。これを読めばAI人材不足について、具体的な解決策が丸わかりですよ。

現状と背景①AI人材の重要性

AI技術の導入は、製造業やサービス業、医療、金融などの幅広い分野で価値を生み出しています。

たとえば、製造業では生産ラインの自動化や品質管理の効率化、医療分野では診断支援や新薬開発の加速が実現されています。

このように、AI人材は産業革新を牽引する役割を担っています。

現状と背景②不足の規模

経済産業省の調査によると、日本のIT人材不足は全体で約79万人に達し、そのうちAI人材の不足は特に深刻です。

AIやデータサイエンス、IoT(モノのインターネット)などの先端技術に対応できる専門家が不足しており、2030年には約12万人に達すると予測されています。

人材不足の原因

需要の急増

AI技術の急速な進歩と、それに伴う需要の急増にあります。近年、第4次産業革命を背景に、AI、ビッグデータ、IoTといった先端技術を活用する新しいビジネスが急成長しています。

これにより、生産性の向上や付加価値の創出が期待され、AIを中心としたIT人材の確保が急務となっています。

特に、Deep Learning(深層学習)の登場やコンピューティングパワーの飛躍的な向上により、AI分野での革新が加速しています。

この技術進歩は、企業にとって新たな市場開拓や業務効率化の大きなチャンスとなっています。

その結果、AI技術を研究・開発し、それを実際に導入・運用するための人材需要が急増しました。

AI人材は、その役割によってサイエンス系、エンジニアリング系、ビジネス系の3つに区分されます。

サイエンス系では、AIアルゴリズムや理論の研究を担う専門家が必要とされます。一方、エンジニアリング系では、AIモデルを実装し、システムやアプリケーションとして運用可能な形にする技術者が求められています。

さらに、ビジネス系では、AIの適用可能性を評価し、具体的なビジネス企画に結びつけるプランナーの需要も高まっています。

このように、AIの普及が進む中で、さまざまな専門スキルを持つ人材が必要とされています。

労働力人口の減少

日本における労働力人口は、少子高齢化の影響を受けて減少し続けており、この人口動態がIT人材の供給に大きな影響を与えています。

労働力人口の減少は、若年層の人口減少に直結しています。日本では、少子化の影響により、18歳から24歳の若者の数が減少しています。

この層は、IT業界における新卒人材の主な供給源であるため、IT人材の確保がますます難しくなっています。

また、少子高齢化により、60歳以上の高齢者人口が増加しており、IT業界ではこの世代の労働力活用も課題となっています。

高齢者の労働参加率が上昇しているものの、彼らがIT技術を習得し、現場で活躍できるレベルの人材となるには時間と投資が必要です。

一方、2030年のIT人材供給に関する試算結果では、新卒人材の増加がIT人材数の増加に寄与するものの、年齢分布が偏る傾向にあります。

2020年には、40歳から44歳の層が最も多く、若年層(30歳未満)の割合は低下していることが示されています。このことは、現在のIT人材市場における課題を象徴しています。

新卒からの人材供給は増加傾向にあるものの、それに伴い、特に40代以上の中堅層が増加し、若年層のIT人材の割合が相対的に減少しているため、企業の成長や競争力を支えるための若手技術者の確保が急務となっています。

さらに、IT人材の年齢分布を見てみると、若手層の重要性が増す一方で、50歳以上の層が高い割合を占めており、この年齢層の労働力の活用が重要なテーマとなっています。

若年層の流入が増える2030年には、IT人材市場において新たな世代が主流となり、25歳から34歳の若手層が活躍することになりますが、一方で、高齢層の活躍も期待されています。

特に、IT技術の高度化が進む中で、既存の労働力を如何にして技術に対応させ、活用するかが今後の課題です。

AI人材不足の解決策は?

新卒人材の供給強化

近年、IT分野への新卒者数は増加傾向にありますが、少子化による新卒者総数の減少や、大学・大学院の教育キャパシティの限界を考えると、さらなる増加は容易ではありません。

しかし、初等中等教育や高等教育を通じたIT教育の充実が、その解決に寄与します。2020年から小学校、2021年から中学校で開始されたプログラミング教育は、若年層がITスキルを身につけるきっかけとなります。

これにより、論理的思考力を備えた人材が育ち、2030年に労働市場へ参入する際には、IT人材供給の質的向上も期待されます

高等教育では、AIやデータサイエンスの高度な学びを提供し、実践的スキルを身につける場を拡充することが求められます。

産学連携やオンライン教育の活用も、新たな学びの形として有効です。これらの教育を受けた新卒者は、IT業界だけでなく、幅広い産業分野で生産性向上やイノベーションを推進する力となります。

新卒人材の供給力強化は、AI人材不足解消の鍵であり、AI時代を支える基盤構築に直結します。

大学等教育機関の供給力強化

AI人材不足の課題解決には、大学や大学院などの教育機関が果たす役割が重要です。

近年、多くの大学でAIやデータサイエンスに特化した学部や研究科が新設され、供給力を高める動きが進んでいます。

たとえば、滋賀大学では2017年にデータサイエンス学部を設置し、年間100名の定員を設けています。

また、東京農工大学や横浜市立大学、武蔵野大学などでも同様の新設が行われており、AI分野の教育が活性化しています。これらの動きにより、AI技術者やデータサイエンティストの供給が中長期的に増加すると期待されています。

供給力向上の具体策として、新設学部や大学院の定員増加があります。試算によれば、これらの新設によるAI人材供給の増加は、学部卒業生の修士課程への進学率(約37.6%)や、学部卒業から修士課程修了までの期間(約6年)を考慮して段階的に反映されます。

この動向が継続すれば、2030年には大学から供給されるAIエンジニアの数が大幅に増加し、需給ギャップの縮小につながると見込まれています。

特に、修士課程の新設や定員拡充は、高度なスキルを持つAI人材の輩出に直接的な効果をもたらします。

たとえば、研究科新設により、修了時には約2年で即戦力となるAIエンジニアが労働市場に供給されます。

この供給増が持続可能であれば、AI技術の進展に対応した人材の安定的な確保が可能となります。教育機関での取り組みは、量的な増加だけでなく、質の向上にも寄与します。

特に、AI分野の学術研究を通じて学生が高度な専門知識を習得し、それを実社会で応用することで、産業全体のイノベーションを加速させる効果が期待されています。

企業内育成・確保の強化

AI人材不足を解消するためには、大学による人材供給力の強化だけでなく、企業内部でのAI人材の育成と確保が欠かせません。

AI技術の需要が高まる中で、企業内でのスキル転換や育成プログラムを通じて人材の質と量を補う取り組みが重要です。

特に、既存のIT人材を対象にAIに関するスキルを習得させることで、企業内でAIエンジニアを育成することが可能です。

AIエンジニアには、AIモデルやその背景技術を理解し、それをソフトウェアやシステムとして実装する能力が求められます。

既存のAIライブラリを活用したソフトウェア開発も含め、これらのスキルは、従来型IT人材が短期的な研修やオンザジョブトレーニングを通じて習得できる範囲です。

こうした取り組みを企業が積極的に進めることで、AI人材不足の解消に寄与します。

一方、AIサイエンティストの育成は難易度が高い課題です。高度な数学的知識や学術的素養が必要とされるため、企業内での短期的な育成は難しく、大学や研究機関との連携が求められます。

これに対し、AIプランナーは、技術的な知識だけでなくビジネス企画能力も必要であり、その育成方法が確立されていません。企業はAI活用を推進する上で、この分野の教育プログラムを開発し、早急に実施する必要があります。

さらに、AI教育の普及を加速するため、企業は外部リソースの活用も検討すべきです。

オンライン教育や専門機関との協力により、最新技術に関する知識を柔軟に学べる環境を整えることが有効です。

また、企業内でAI技術を導入・推進するリーダーシップ層を育てることで、組織全体でAI活用を促進できます。

おわりに

いかがでしたか。本日は2030年のAI人材不足に関して、その概要や原因と解決策について解説していきました。

AI人材不足は、単に技術の問題にとどまらず、経済全体の成長や競争力に影響を与える重大な課題です。

教育の強化、多様な人材の活用、国際的な協力を通じて、この問題に取り組むことが求められます。

AI時代における競争力を高めるためには、迅速かつ柔軟な対応が必要です。企業や教育機関、政府が一体となり、未来を担うAI人材の育成に向けた取り組みを加速させるべきです。

makka

Recent Posts

2025年の崖:その後の課題と企業が取るべき対策

「2025年の崖」とは、2018年に経済産業省が発表した「DXレポート」において示された概念です。 2025年には企業の基幹系システムの約6割が導入から21年以上経過し、適切な対策を講じなければ年間最大12兆円の経済損失が発生する可能性があると指摘されました。 この警鐘を受け、多くの企業がレガシーシステムの刷新やERP(Enterprise Resource Planning)の導入を進めました。 しかし、2025年を迎えた現在、単なるシステムの更改では企業の競争力向上には不十分であることが明らかになっています。 この記事では、「2025年の崖」を乗り越えた企業が直面する新たな課題と、それに対する具体的な対策について詳しく考察します。 2025年の崖に対する具体的な課題や解決策を知りたい方 社内のIT人材が不足している方 これらに当てはまる方におすすめの記事となっています。これを読めば2025年の崖が現状どのような状況なのかやその対策などが丸わかりですよ。 (more…)

5 days ago

MESとERFの違い?

製造業において、生産管理の効率化は競争力を維持するために欠かせません。 その中でも、MES(Manufacturing Execution System)とERF(Enterprise Resource Planning for Factories)は重要な役割を果たします。 この記事では、そんなMESとERFについて、それぞれのシステムの概要、特徴、利点、そして違いについて詳しく解説します。 MESとERFについて気になる方 製造業の方 社内のIT人材が不足している方 これらに当てはまる方におすすめの記事となっています。これを読めばMESとERFについてそれぞれの特徴がわかるのはもちろん、も分かりますよ。 (more…)

1 week ago

MESシステムとは?特徴、役割やメリットを紹介

MESシステムは製造業において、生産現場の管理などを行うシステムです。MESシステムを導入することで、生産効率や品質の向上が期待されます。 本日はそんなMESシステムについて、どのような特徴があるのかやその役割やメリットなど徹底解説していきます。 MESシステムが気になっている方 製造業の方 社内のIT人材が不足している方 これらに当てはまる方におすすめの記事となっています。これを読めばMESシステムについて詳しくなるのはもちろん、導入の際に気をつけるべきことまで丸わかりですよ。 (more…)

1 week ago

【2025年版】オフショア開発で発生しがちな認識のズレを埋めるプロトタイプツール7選

オフショア開発は安価で高品質の開発ができる開発手法ですが、コミュニケーションの問題が発生しがちです。 そんなコミュニケーションロスの問題を解決するツールとして、今回紹介したいのがプロトタイプツールです。 プロトタイプツールを利用することで、会話型のコミュニケーションから視覚的なコミュニケーションに移行することができ、よりわかりやすく情報を共有することができるのです。 この記事ではそんなプロトタイプツールのおすすめ7つを紹介していきます。 オフショア開発に興味がある方 プロトタイプツールを詳しく知りたい方 オフショア開発のコミュニケーションの問題に悩まれている方 これらに当てはまる方におすすめの記事となっています。これを読めば、オフショア開発のコミュニケーション問題を解決する方法がわかりますよ。 (more…)

1 week ago

2025年注目のモバイルアプリ開発フレームワーク 5選

スマートフォン市場がますます進化する中で、モバイルアプリの開発技術も飛躍的に向上しています。 特に、クロスプラットフォーム開発の重要性が増し、開発スピードやコスト削減を実現するフレームワークが次々と登場しています。 この記事では、2025年に注目されるモバイルアプリ開発フレームワークを5つ紹介し、それぞれの特徴やメリットを詳しく解説します。 モバイルアプリ開発を行いたい方 モバイルアプリ開発フレームワークについて最新情報を知りたい方 社内のIT人材が不足している方 これらに当てはまる方におすすめの記事となっています。これを読めばモバイルアプリ開発のフレームワークについて注目のものが何なのか丸わかりですよ。 (more…)

2 weeks ago

ベトナムオフショア開発でも対応できるクラウドインフラ基盤構築体制のコツ

近年、クラウドインフラの導入が進む中で、オフショア開発においても効率的なクラウド基盤の構築が求められています。 しかし、クラウドインフラ基盤の構築に際しては、日本とベトナムの技術レベルや環境の違いによって課題が生じることが少なくありません。 そこでこの記事では、ベトナムオフショア開発でもスムーズにクラウドインフラを構築するためのコツについて詳しく解説し、成功のためのポイントを紹介します。 オフショア開発に興味がある方 クラウドインフラを導入しようとお考えの方 社内のIT人材が不足している方 これらに当てはまる方におすすめの記事となっています。これを読めば、オフショア開発を活用する企業がクラウド環境を安定的に運用できる方法が分かりますよ。 (more…)

3 weeks ago