オフショア開発

AIエージェント導入によくある課題と解決方法

近年、業務効率化や顧客対応の高度化を目的として、企業や自治体、教育機関など多くの組織で「AIエージェント」の導入が進んでいます。

AIエージェントとは、人工知能を活用して自動的に応答や処理を行うシステムの総称で、チャットボットやバーチャルアシスタント、RPA(Robotic Process Automation)などが含まれます。

しかしながら、AIエージェントの導入には多くの期待が寄せられる一方で、現場ではさまざまな課題に直面するケースも少なくありません。

この記事では、AIエージェント導入によくある課題とその解決方法について、具体的に解説していきます。

  • AIエージェントに興味がある方
  • AIエージェントの導入に不安がある方
  • 社内の人材不足にお悩みの方

これらに当てはまる方におすすめの記事となっています。これを読めばAIエージェントの特徴がわかるのはもちろん、うまく活用するための方法もわかりますよ。

AIエージェントとは

AIエージェントとは、人工知能を活用して人間のように対話や判断を行い、業務や生活のサポートをするシステムのことを指します。

主にチャットボットや音声アシスタントの形で導入され、問い合わせ対応、業務フローの自動化、顧客サポートなど、さまざまな用途で活用されています。

近年では自然言語処理や機械学習の進化により、より人間らしい応答や高度な分析が可能になっており、企業の業務効率化やサービス品質の向上に寄与しています。

また、ユーザーの入力データをもとに継続的に学習・改善していく仕組みを持つものも多く、導入後の運用体制も重要です。ただし、過度な期待や不適切な運用は効果を損なうため、明確な目的設定と適切な管理が求められます。

AIエージェントは、うまく活用すれば人手不足の解消や顧客満足度向上に大きく貢献する存在です。

課題1. 導入目的が曖昧なまま進めてしまう

【課題】

近年、多くの企業が「AIが話題だから」「業務効率化につながりそうだから」といった漠然とした理由でAIエージェントの導入を進めています。

しかし、導入の目的が明確でないままプロジェクトを始めてしまうと、期待した効果が得られず、結果的に運用が形骸化してしまうケースが少なくありません。

本来AIエージェントは、明確な業務課題に対する解決手段として導入されるべきものです。目的が曖昧なままだと、関係者間で認識がずれ、要件定義がぶれたり、最適なツール選定ができなかったりするリスクも高まります。

【解決方法】

まずは「何を解決したいのか」を明確にし、KPI(重要業績評価指標)を設定しましょう。たとえば、以下のように目的を具体化することが重要です。

  • 問い合わせ対応時間を30%短縮する
  • オペレーターの負担を軽減して離職率を下げる
  • 顧客満足度(CS)を向上させる

導入前に小規模なPoC(概念実証)を実施し、目的と手段が合致しているかを検証するのも有効です。

課題2. データの整備が不十分

【課題】

AIエージェントは、あらかじめ与えられたデータをもとに応答を行うため、その精度や有用性はインプットされる情報の質に大きく左右されます。

しかし、導入先の企業においては、社内のFAQや業務マニュアルが古くなっていたり、情報がバラバラに存在していたりと、十分に整備されていないケースが少なくありません。

こうした状態では、AIが適切な回答を導き出せず、利用者の満足度を下げてしまう恐れがあります。

また、不完全な情報を基に応答した結果、業務ミスや問い合わせ対応の混乱を招くリスクもあります。

【解決方法】

AI導入に先立ち、社内のナレッジやFAQ、業務フローを整理・更新することが必要です。AIエージェントに取り込む情報は、以下のように分類しておくと管理しやすくなります。

  • よくある質問(FAQ)
  • 商品・サービスの仕様情報
  • 社内手続きマニュアル
  • 過去の問い合わせデータ

さらに、データ整備は一度きりではなく、継続的なメンテナンスが求められます。運用後もAIの回答をレビューし、改善を重ねる体制を整えましょう。

課題3. ユーザーの期待値と実力のギャップ

【課題】

AIエージェントに対して「何を聞いても完璧に答えてくれるはず」といった過度な期待を抱くユーザーは少なくありません。

しかし、実際のAIエージェントは、あくまで事前に与えられたデータや定義された範囲内でしか対応できず、想定外の質問には正確な回答ができないこともあります。

このような期待と実力のギャップが大きいと、ユーザーは失望し、AIの利用を避けるようになります。

結果として、再び人間による対応に逆戻りし、AI導入の効果が薄れてしまうこともあります。

【解決方法】

AIエージェントの対応範囲や得意不得意を事前に明確に伝えることで、ユーザーの期待をコントロールできます。たとえば、以下のようなメッセージを初回の起動時に表示するのが効果的です。

「このチャットボットは、商品の使い方やよくあるご質問にお答えします。個別の契約内容やトラブル対応については、人間のオペレーターにつなぎます。」

また、対応できない質問が来たときには、スムーズに人間に引き継ぐ「エスカレーション機能」の実装も重要です。

課題4. 現場の理解・協力が得られない

【課題】

AIエージェントの導入は、経営層や情報システム部門など上層部の主導で進められるケースが多く見られます。

しかし、実際にAIと日々連携して業務を行うのは現場の担当者です。現場の理解や協力が不十分なまま導入を進めてしまうと、「使い方が分からない」「既存業務の方が早い」といった理由で活用されず、システムが定着しないまま形骸化してしまう恐れがあります。

また、現場のニーズや業務実態を反映しない導入設計は、かえって業務の非効率化を招くこともあります。

【解決方法】

初期段階から現場の担当者を巻き込むことが不可欠です。

業務の実態や現場が抱える課題を丁寧にヒアリングし、それらを反映した形でAIの設計・運用方針を構築することで、現場の納得感と協力を得やすくなります。

また、導入後も継続的なフォローが重要です。操作方法や運用目的を共有する研修会・勉強会を定期的に実施し、現場からの疑問や懸念を解消する場を設けましょう。

こうした取り組みによって、「現場の声を反映したAI」であるという意識が根づけば、自然と利用率も向上し、現場からのフィードバックによる改善サイクルも生まれます。

現場との対話と信頼を重視した導入・運用が、AIエージェントを定着させる鍵となります。

課題5. 継続的な運用体制が不在

【課題】

AIエージェントは「導入して終わり」ではなく、導入後の運用と継続的な改善が成果を左右します。

しかし多くの企業では、運用を専門的に担う人材が不在だったり、社内での役割分担が明確にされていなかったりと、体制面に課題を抱えています。

その結果、特定の担当者に業務が集中し、属人化が進んでしまうケースも少なくありません。また、担当者が異動や退職で不在になるとノウハウが失われ、AIエージェントの品質維持が困難になるリスクもあります。

運用体制が整っていないままでは、ユーザーからのフィードバックを十分に反映できず、改善のサイクルも滞りがちになります。

【解決方法】

AIの運用には以下のような役割を明確に分担する必要があります。

コンテンツ管理担当FAQや回答内容の更新
分析担当利用状況や回答精度の分析
改善担当AIエージェントの調整とフィードバック反映
技術担当システム保守やインフラ対応

これらの業務を社内で対応できない場合は、ベンダーとのサポート契約を活用し、外部と連携して運用を継続する体制を整えることも一つの手です。

課題6. セキュリティ・個人情報の取り扱い

【課題】

AIエージェントはユーザーの入力内容をもとに応答を行うため、個人情報や機密情報を取り扱うリスクが常に伴います。

特にチャット型のAIでは、利用者が無意識のうちに名前、住所、社員番号などの個人情報を入力してしまうこともあり、その情報が記録・学習されることで、情報漏えいや不適切な利用につながる恐れがあります。

また、社内システムと連携する場合には、業務データや顧客情報など、より高度なセキュリティ対策が求められます。

こうしたリスクを軽視したまま運用を開始してしまうと、企業の信用失墜や法的リスクにも発展しかねません。

【解決方法】

AIエージェントを安全に運用するためには、利用者に対してプライバシーポリシーや利用規約を明示し、個人情報の取り扱いに関する注意喚起を行うことが基本です。

そのうえで、技術的・組織的な対策をあわせて講じる必要があります。

たとえば、入力されたデータから個人情報を自動で検出・除去するフィルタリング機能の実装、個人情報を含む会話ログを保存しない設定、アクセスログの適切な管理と定期的な監査の実施、さらに従業員への情報セキュリティ教育の徹底が重要です。

また、AIエージェントの提供元であるベンダーが、ISO 27001などの国際的なセキュリティ基準に準拠しているかどうかも、選定時の重要な判断材料となります。

これらの対策を通じて、ユーザーと企業双方の信頼を守る体制を整えることが求められます。

まとめ

いかがでしたか。本日はAIエージェントについてよくおこる問題とその解決方法について解説していきました。

AIエージェントは、正しく活用すれば業務の効率化やサービス品質の向上に大きく貢献します。

しかし、魔法のツールではありません。目的の明確化、現場との連携、継続的な運用と改善があってこそ、その真価が発揮されます。

導入を「プロジェクト」として終わらせず、「文化」として根付かせるためには、経営層・IT部門・現場担当者が一体となって“共創”する姿勢が何より重要です。

これからAIエージェントの導入を検討する方は、今回紹介した課題と解決策を参考に、自社に最適な導入・運用方法を見つけていただければ幸いです。

makka

Recent Posts

システム開発のライフサイクルとは?主要な開発フェーズと代表なモデルを解説

ビジネスや社会のあらゆる場面でシステムが欠かせない現代において、システム開発を効率的かつ確実に進めるための枠組みとして「システム開発ライフサイクル(SDLC:System Development Life Cycle)」が存在します。 SDLCは、システムを企画・開発・運用・保守するまでの一連の流れを定義したもので、開発プロジェクトを成功させるための道しるべといえます。 この記事では、システム開発ライフサイクルの基本的な考え方と、主要な開発フェーズ、さらに代表的な開発モデルについて解説します。 システム開発を発注・管理する立場の方 IT人材が不足している方 システム開発ライフサイクルの具体的内容が知りたい方 これらに当てはまる方におすすめの記事となっています。これを読めばシステム開発を効率的に進める方法が丸わかりですよ。 (more…)

5 days ago

システム保守の費用相場は?費用を抑えるポイントも徹底解説

システム開発が完了した後、安定して稼働させるためには「システム保守」が欠かせません。 しかし実際に見積もりを取ると、費用が高いと感じる企業も多いのではないでしょうか。 この記事では、システム保守の費用相場を解説するとともに、コストを抑えるための具体的な方法を徹底的に紹介します。 これから保守契約を検討する方 すでに保守契約しているが見直したい方 システム保守の費用について知りたい方 これらに当てはまる方におすすめの記事となっています。これを読めばシステム保守にいくらかかるのかや、費用を抑えるためのポイントも丸わかりですよ。 (more…)

6 days ago

AI総合ソリューションで業務を革新。DEHAが届ける確かな信頼と価値

2017年の起業から今まで、DEHA SOLUTIONSが歩んできた9年間は、お客様と社員の皆様からのご支援とご協力なくしては語ることができません。心より感謝申し上げます。  私たちはこの間、ベトナムを開発拠点とするシステム開発企業として、日本国内のIT市場向け様々な課題に真摯に向き合ってまいりました。2019年に発表された経済産業省によるIT人材需給に関する調査によると、2030年の日本国内におけるIT人材は最大で約79万人が不足すると予測されています。この深刻な状況の中、多くのSIer企業様や中小・大企業様の開発パートナーとしては、高品質で開発及びソリューションを安定的に提供することで、日本のIT業界の成長を支える一翼を担っています。  >>関連記事:日本経済産業省によると2030年には最大で約79万人のIT人材が不足  近年、ビジネス環境は急速に変化し、DXの波が隅々にまで浸透することに加え、AI技術も全産業を席巻しています。DEHAマガジンでも度々記事を取り上げてきたように、現在AIは単なるトレンドではなく、未来の社会を形作る基盤となりつつあります。  そんな大きな時代の変化を捉え、私たちDEHA SOLUTIONSはこれまでの9年間で培ってきた豊富なナウハウで、AI分野に注力を決意しました。単なる技術ベンダに留まらずに、お客様にとって最も信頼性があるAI総合ソリューション開発パートナーとしては、共に課題解決及びビジネス発展にしていくことを目指してまいります。  (more…)

1 week ago

開発リソース不足を解決する5つ方法を徹底比較

開発の現場では「人が足りない」「スキルが合わない」「今すぐ増強したい」が日常茶飯事です。 そこでこの記事では、①オフショア開発 ②ニアショア開発 ③フリーランス・業務委託 ④SES ⑤社内のリソース強化(社員育成・ノーコード/ローコード・AI活用)の5つ手段を、スピード/コスト/品質確保/管理負荷/機密性/拡張性で徹底比較し、選び方の指針まで一気通貫で整理します。 開発を効率化させたい方 社内のIT人材が不足している方 これらに当てはまる方におすすめの記事となっています。これを読めば開発リソースを確保するためのそれぞれの手段について、特徴がわかりますよ。 (more…)

2 weeks ago

【2025年版】ベトナムオフショア開発の人月単価相場

近年、IT人材不足が深刻化する日本市場では、オフショア開発の活用がますます一般的になっています。 なかでも、ベトナムは高い技術力とコスト競争力を兼ね備えた国として、依然として人気を維持しています。 この記事では、2025年最新のベトナムオフショア開発における人月単価相場を役割別に解説し、最新動向までを詳しくご紹介します。 ベトナムオフショアに興味がある方 開発コストを抑えたいとお考えの方 社内のIT人材が不足している方 これらに当てはまる方におすすめの記事となっています。これを読めばベトナムオフショアの具体的なコストがわかりますよ。 (more…)

3 weeks ago

【2025年】円安がいつまで続く?オフショア開発に与える影響

2025年8月時点におけるドル/円(USD/JPY)の為替レートは、およそ ¥146.9です。 円安傾向は続いており、過去数十年のトレンドとも重なりつつ、依然として投資・政策動向から注目を浴びています。 この記事ではそんな円安に着目してオフショア開発に与える影響を見ていこうと思います。 オフショア開発を始めたい方 社内のIT人材が不足している方 開発効率を上げたい方 これらに当てはまる方におすすめの記事となっています。これを読めばオフショア開発に円安がどう影響するのかがわかるのはもちろん、いつ始めるべきかまで丸わかりですよ。 (more…)

4 weeks ago