ChatGPT時代で多くの仕事が失われる可能性があると言われています。その中の1つにエンジニアも含まれます。
本当にエンジニアはChatGPT時代において淘汰されてしまうのでしょうか。
この記事ではそんなChatGPT時代におけるエンジニアについて今後どうなっていくのか、エンジニアが今後身に付けておいたスキルは何なのかなど徹底解説していきます。
これらに当てはまる方におすすめの記事となっています。これを読めばChatGPT時代においてエンジニアはどう変わっていくのか、今のうちに身に付けておいた方が良いスキルなど丸わかりですよ。
ChatGPTとは2015年にアメリカで設立したOpenAIが提供しているサービスです。
チャット方式で自然な対話の中で人工知能が適切な回答を表示させます。
従来から多くのWEBサイトでチャットボットが利用されていましたが、ChatGPTは回答できる範囲や回答パターンがこれまでのチャットと比較して大幅に拡大しています。
そのためあらゆる業務に活用したり、カスタマー対応などに向いていて、業務効率化を図ることが可能です。
ChatGPTは自然言語処理AIで、質問に回答したり文章を生成したりできます。
文章の要約、翻訳、文章の感情分析、プログラミングコードの生成など多岐にわたるタスクに対応しています。
また学習データに基づいて膨大な情報をもたらし、専門知識や問題解決に役立ちます。
例えばチャットボットとしてChatGPTを利用した場合、顧客の質問内容を吸収・分析し、よりその顧客にあった回答を生成できるほか、それをマーケティングなどに応用していくことなども可能です。
このように、ChatGPTはビジネス、教育、クリエイティブ、カスタマーサポートなど様々な分野で活用され、革新的なサービスを提供しています。
結論から言うと、ChatGPT時代でエンジニアは不要にはなりません。確かに自然言語処理の分野でのエンジニアの役割は変化する可能性があります。しかし、それはエンジニアのタスクの一部であり、全体ではないためエンジニア自体がなくなるとは考えづらいのです。
実際、ノーコードが流行った時もプエンジニアの仕事でコーディングはワークフロー全体のほんの一部であるため、エンジニアの仕事はなくなっていません。
ではChatGPT時代におけるエンジニアの役割は何になるのでしょうか。
エンジニアはChatGPTを適切にカスタマイズし、特定のビジネスや産業に合った機能を追加・修正する役割を担います。
ChatGPTは汎用的な知識を持っていますが、特定の業界やタスクに特化した知識を取り入れるためにはエンジニアの手が必要です。
ChatGPTは大量のデータを学習していますが、特定の用途に適したデータセットの整備やクリーニングが必要です。
対象となるテーマやタスクに関連するデータをオンラインやデータベースから収集し、不要な情報を削除したり、欠損値を補完したりしてデータの品質を高めていきます。
さらにデータセットに偏りがある場合、AIの学習に悪影響を及ぼす可能性があるため、不足しているデータを増やすオーグメンテーションなどの対策を行なっていきます。
このように、エンジニアは適切なデータセットを収集・整形し、ChatGPTの性能を向上させる役割を果たします。
ChatGPTは常に進化していますが、不適切な応答やバグが発生する可能性もあります。
エンジニアはChatGPTを監視し、適切な修正や保守を行い、安定した動作を維持します。
自然言語処理AIは社会的な影響が大きく、倫理的な問題も浮上しています。
エンジニアは倫理観を持ち、セキュリティ対策を徹底し悪用や誤解釈を防止する役割を果たします。
エンジニアはChatGPT以外の新しい技術や手法を研究し、AIの発展を推進します。ChatGPTが解決できない問題や新たな用途を見出し、その可能性を追求していく必要があるでしょう。
ChatGPT時代のエンジニアには、AI技術の進化に適応し、柔軟な学習とスキルの継続的な向上が必要です。
常に最新の技術動向に目を向け、多様なスキルを身につけることが重要です。
ChatGPTは自然な対話を行うため、NLPの理解や処理能力が不可欠です。
エンジニアはNLPの基礎から応用まで学び、テキストデータの前処理や言語モデルの構築に精通する必要があります。
ChatGPTはディープラーニング技術に基づいており、エンジニアは機械学習アルゴリズムやニューラルネットワークの理解と実装能力を高める必要があります。
特に、自然言語処理に適したモデルの選択やチューニングが重要です。
ChatGPTの学習には大量のデータが必要であり、エンジニアは効率的なデータ処理と前処理技術を習得する必要があります。
データのクリーニング、ラベリング、バランス調整などが重要なスキルです。
ChatGPTなどのAIシステムは複雑で不確定な要素があります。エンジニアは効果的なテストとデバッグ技術を習得し、AIシステムの信頼性を高めることが求められます。。
AIプロジェクトは複数のチームで進行することが多いため、エンジニアは効果的なコミュニケーション能力を持つことが重要です。
ビジネス部門や他の技術者と円滑にコミュニケーションを取りながらプロジェクトを進める能力が求められます。
いかがだったでしょうか。本日はChatGPT時代におけるエンジニアのこれからについて解説していきました。
ChatGPTでプログラミングやサイト構築などを行うことができますが、それはエンジニアのタスクの一部であるため、エンジニア時代の仕事が淘汰される心配はありません。
しかしChatGPTとともに仕事を行なっていくにあたり、これまでのエンジニアのあり方が大きく変わっていくでしょう。
特定のコンテキストやビジネスニーズに適合したカスタマイズや整備、監視・保守、倫理・セキュリティ対策などのスキルを身に付け、ChatGPTとともに仕事をこなしていくことがこれからのエンジニアに求められます。
2026年のベトナムは、東南アジアの中でも特に「デジタル化が成熟段階に入りつつある国」として注目を集めています。 スマートフォンの普及、ソーシャルメディアの浸透、高速通信インフラの整備、そして若く人口ボーナス期にある社会構造が相まって、デジタル技術はすでに人々の日常生活、経済活動、情報収集の中核となっています。 この記事では、DataReportal「Digital 2026 Vietnam」レポートをもとに、2026年のベトナムにおけるデジタルデバイス、インターネット、ソーシャルメディア、主要プラットフォームの利用状況とその背景、そして今後の方向性について総合的に解説していきます。 ベトナムのデジタルの最新情報が気になる方 社内のIT人材が不足している方 ベトナムのIT人材が気になる方 これらに当てはまる方におすすめの記事となっています。これを読めばベトナムのデジタルの最新情報や動向が丸わかりですよ。 関連記事: 【2024年版】ベトナムのDX市場の状況と動向 2025年のベトナム デジタル状況、最新動向 (more…)
ソフトウェア開発の歴史において、エンジニアの核心的な能力は「コードを書く力」で測られてきました。しかし、AI技術が飛躍的に進歩し、人間よりも速く一貫性のあるコードを生成できるようになった今、その価値の軸が大きくシフトしています。 これからのエンジニアに求められるのは、単なるプログラミングスキルではなく、いかに高度なAI活用を行い、システムに何を許し、何を許さないかという「制約」を正しく設計できるかという点にあります。 (more…)
クラウドコンピューティングは、企業や政府のデジタルトランスフォーメーション(DX)を支える基盤です。 データ保存、アプリケーション実行、AI・データ分析など、あらゆるITインフラがクラウドを通じて提供されるようになった現代において、クラウド市場の動向は企業戦略の要です。 2026年は世界的に5G、AI、IoT(モノのインターネット)、機械学習などがクラウド活用を加速させ、市場全体が大きく成長すると予測されています。 この記事では、2026年のクラウド市場について世界市場の最新シェアや日本国内のクラウド市場シェアとその特徴などを紹介していきます。 企業の IT戦略・DX推進担当者の方 クラウド関連ビジネスに関わる方 これらに当てはまる方におすすめの記事となっています。これを読めば2026年のクラウド市場のシェアやトレンドが丸わかりですよ。 (more…)
2030年に向けて、日本のIT市場は単なる成長産業ではなく、社会全体を支える基盤(インフラ)としての性格を一層強めていくと考えられます。 背景には、世界規模で進行するデジタル化、AI技術の急速な発展、クラウドサービスの定着、そして日本固有の人口減少・地方分散という社会構造の変化があります。 この記事では、世界のICT市場動向を起点に、日本のソーシャルメディア、メタバース、クラウド、データセンター、情報セキュリティといった分野が、2030年に向けてどのように変化していくのかを多角的に整理していきます。 IT市場の未来が気になる方 AI技術がどのように発展していくか気になる方 これらに当てはまる方におすすめの記事となっています。これを読めば日本のIT市場の未来が丸わかりですよ。 (more…)
日本は2030年代に入ると急激に人口が減少し、労働力全体の供給が縮小するとの構造的な課題を抱えています。 特にデジタル技術の中心となるAI(人工知能)やロボットの開発・利活用を担う人材の不足が深刻になるとの推計が経済産業省の将来試算で示されています。 現在の教育・採用のままでは、2040年にAI・ロボット関連の人材が約326万人不足する可能性があるとされています。 この数字の背景には、生成AIの急速な普及やデジタル技術の社会インフラ化がある一方で、既存の人材供給は追いつかず、求められるスキルとのミスマッチが拡大している実態があります。 この記事では、こうした人材リスクの本質を整理しつつ、デジタル人材減少時代を生き抜く方策として、オフショア(海外)によるグローバル開発チームの構築戦略をご紹介します。 人材不足にお悩みの方 オフショア開発に興味がある方 これらに当てはまる方におすすめの記事となっています。これを読めばデジタル人材減少時代をどう生き抜くかその方法がわかりますよ。 (more…)
近年、製造業はかつてないほどの環境変化に直面しています。 需要変動の激化、多品種少量生産への対応、グローバルサプライチェーンの複雑化、人手不足、原材料価格の高騰など、経営・現場の両面で不確実性が増大しているのです。 このような状況下において、多くの企業が課題として挙げるのが生産管理の属人化・分断化です。 販売計画と生産計画が連動していない 在庫情報がリアルタイムに把握できない 工程進捗が見えず、計画変更が後手に回る システムは導入しているが、Excelや紙運用が残っている これらの問題は、部分最適なシステム導入や、部門ごとに分断された業務プロセスによって引き起こされることが多いです。 こうした背景の中で注目されているのが、IFS(Industrial and Financial Systems)を活用した統合型生産管理の自動化。 この記事では、IFSの特長を踏まえながら、製造業における生産管理自動化の方式と、それを支えるプロセスモデルについて詳しく解説していきます。 (more…)