AI

ChatGPT時代でエンジニアが本当に不要になるのか【これからのエンジニアとは】

ChatGPT時代で多くの仕事が失われる可能性があると言われています。その中の1つにエンジニアも含まれます。

本当にエンジニアはChatGPT時代において淘汰されてしまうのでしょうか。

この記事ではそんなChatGPT時代におけるエンジニアについて今後どうなっていくのか、エンジニアが今後身に付けておいたスキルは何なのかなど徹底解説していきます。

  • ChatGPTに興味がある方
  • 現役エンジニアの方
  • ChatGPTを活用したい企業の方

これらに当てはまる方におすすめの記事となっています。これを読めばChatGPT時代においてエンジニアはどう変わっていくのか、今のうちに身に付けておいた方が良いスキルなど丸わかりですよ。

ChatGPTとは

ChatGPTとは2015年にアメリカで設立したOpenAIが提供しているサービスです。

チャット方式で自然な対話の中で人工知能が適切な回答を表示させます。

従来から多くのWEBサイトでチャットボットが利用されていましたが、ChatGPTは回答できる範囲や回答パターンがこれまでのチャットと比較して大幅に拡大しています。

そのためあらゆる業務に活用したり、カスタマー対応などに向いていて、業務効率化を図ることが可能です。

ChatGPTでできること

ChatGPTは自然言語処理AIで、質問に回答したり文章を生成したりできます。

文章の要約、翻訳、文章の感情分析、プログラミングコードの生成など多岐にわたるタスクに対応しています。

また学習データに基づいて膨大な情報をもたらし、専門知識や問題解決に役立ちます。

例えばチャットボットとしてChatGPTを利用した場合、顧客の質問内容を吸収・分析し、よりその顧客にあった回答を生成できるほか、それをマーケティングなどに応用していくことなども可能です。

このように、ChatGPTはビジネス、教育、クリエイティブ、カスタマーサポートなど様々な分野で活用され、革新的なサービスを提供しています。

ChatGPT時代でエンジニアは不要になる!?

結論から言うと、ChatGPT時代でエンジニアは不要にはなりません。確かに自然言語処理の分野でのエンジニアの役割は変化する可能性があります。しかし、それはエンジニアのタスクの一部であり、全体ではないためエンジニア自体がなくなるとは考えづらいのです。

実際、ノーコードが流行った時もプエンジニアの仕事でコーディングはワークフロー全体のほんの一部であるため、エンジニアの仕事はなくなっていません。

これからの時代に求められるエンジニアとは

ではChatGPT時代におけるエンジニアの役割は何になるのでしょうか。

開発・カスタマイズ

エンジニアはChatGPTを適切にカスタマイズし、特定のビジネスや産業に合った機能を追加・修正する役割を担います。

ChatGPTは汎用的な知識を持っていますが、特定の業界やタスクに特化した知識を取り入れるためにはエンジニアの手が必要です。

データセットの整備

ChatGPTは大量のデータを学習していますが、特定の用途に適したデータセットの整備やクリーニングが必要です。

対象となるテーマやタスクに関連するデータをオンラインやデータベースから収集し、不要な情報を削除したり、欠損値を補完したりしてデータの品質を高めていきます。

さらにデータセットに偏りがある場合、AIの学習に悪影響を及ぼす可能性があるため、不足しているデータを増やすオーグメンテーションなどの対策を行なっていきます。

このように、エンジニアは適切なデータセットを収集・整形し、ChatGPTの性能を向上させる役割を果たします。

監視・保守

ChatGPTは常に進化していますが、不適切な応答やバグが発生する可能性もあります。

エンジニアはChatGPTを監視し、適切な修正や保守を行い、安定した動作を維持します。

倫理とセキュリティ

自然言語処理AIは社会的な影響が大きく、倫理的な問題も浮上しています。

エンジニアは倫理観を持ち、セキュリティ対策を徹底し悪用や誤解釈を防止する役割を果たします。

新しい技術の導入

エンジニアはChatGPT以外の新しい技術や手法を研究し、AIの発展を推進します。ChatGPTが解決できない問題や新たな用途を見出し、その可能性を追求していく必要があるでしょう。

これからのエンジニアが身につけておいた方が良いスキル

ChatGPT時代のエンジニアには、AI技術の進化に適応し、柔軟な学習とスキルの継続的な向上が必要です。

常に最新の技術動向に目を向け、多様なスキルを身につけることが重要です

自然言語処理(NLP)

ChatGPTは自然な対話を行うため、NLPの理解や処理能力が不可欠です。

エンジニアはNLPの基礎から応用まで学び、テキストデータの前処理や言語モデルの構築に精通する必要があります。

機械学習とディープラーニング

ChatGPTはディープラーニング技術に基づいており、エンジニアは機械学習アルゴリズムやニューラルネットワークの理解と実装能力を高める必要があります。

特に、自然言語処理に適したモデルの選択やチューニングが重要です。

データ処理と前処理

ChatGPTの学習には大量のデータが必要であり、エンジニアは効率的なデータ処理と前処理技術を習得する必要があります。

データのクリーニング、ラベリング、バランス調整などが重要なスキルです。

テストとデバッグ

ChatGPTなどのAIシステムは複雑で不確定な要素があります。エンジニアは効果的なテストとデバッグ技術を習得し、AIシステムの信頼性を高めることが求められます。。

コミュニケーション能力

AIプロジェクトは複数のチームで進行することが多いため、エンジニアは効果的なコミュニケーション能力を持つことが重要です。

ビジネス部門や他の技術者と円滑にコミュニケーションを取りながらプロジェクトを進める能力が求められます。

まとめ

いかがだったでしょうか。本日はChatGPT時代におけるエンジニアのこれからについて解説していきました。

ChatGPTでプログラミングやサイト構築などを行うことができますが、それはエンジニアのタスクの一部であるため、エンジニア時代の仕事が淘汰される心配はありません。

しかしChatGPTとともに仕事を行なっていくにあたり、これまでのエンジニアのあり方が大きく変わっていくでしょう。

特定のコンテキストやビジネスニーズに適合したカスタマイズや整備、監視・保守、倫理・セキュリティ対策などのスキルを身に付け、ChatGPTとともに仕事をこなしていくことがこれからのエンジニアに求められます。

makka

Recent Posts

システム開発のQCDは?プロジェクト管理を最適化

システム開発の現場では、「納期が守れない」「コストが膨らむ」「品質にばらつきがある」といった課題が常に発生します。 こうした問題の根底にあるのが、QCD(Quality・Cost・Delivery)のバランスです。 QCDは製造業を中心に使われてきた概念ですが、現在ではシステム開発やITプロジェクトの世界でも不可欠な管理指標として定着しています。 この記事では、QCDの意味とそれぞれの要素がプロジェクトに与える影響、さらに現代的な最適化の方法までを詳しく解説します。 システム開発を行いたい方 QCDについて知りたい方 社内のIT人材が不足している方 これらに当てはまる方におすすめの記事となっています。これを読めばシステム開発のQCDについて丸わかりですよ。 QCDとは?システム開発における基本指標 QCDとは、Quality(品質)・Cost(コスト)・Delivery(納期)の頭文字を取ったもので、プロジェクトを成功に導く三本柱です。 この3つは相互に影響し合う関係にあり、どれか1つを優先すれば、他の要素にしわ寄せが生じることもあります。 Quality(品質) 品質とは、システムが「期待通りに動作し、ユーザーのニーズを満たしているか」という指標です。 機能面の正確さだけでなく、UIの使いやすさ、パフォーマンス、セキュリティなども含まれます。 高品質なシステムを実現するには、明確な要件定義と、テスト・レビューの徹底が欠かせません。…

1 week ago

アジャイル開発とウォーターフォール開発でリスクとスピードを徹底比較

システム開発の現場では、プロジェクトの進め方として「ウォーターフォール開発」と「アジャイル開発」が広く知られています。 どちらも目的は同じ──高品質なシステムを納期内に完成させることですが、そのアプローチはまったく異なります。 この記事では、特に「リスク」と「スピード」という2つの視点から両者を徹底比較し、それぞれの長所・短所、そしてどんなプロジェクトに向いているかを解説します。 アジャイル開発やウォーターフォール開発の違いを知りたい方 社内のIT人材が不足している方 システム化開発を行いたい方 これらに当てはまる方におすすめの記事となっています。これを読めばアジャイル開発とウォーターフォール開発のそれぞれの特徴が丸わかりですよ。 ウォーターフォール開発とは ウォーターフォール開発(Waterfall Model)は、上流から下流へと「滝のように」工程が流れる開発手法です。 要件定義 → 設計 → 実装…

1 week ago

ウォーターフォール開発は?システム開発の進め方、特徴

システム開発の現場では、「ウォーターフォール開発」や「アジャイル開発」といった言葉をよく耳にします。 その中でもウォーターフォール開は、最も古くから使われている伝統的な開発手法の一つです。 この記事では、ウォーターフォール開発の流れ、特徴、メリット・デメリットをわかりやすく解説します。 システム開発を行いたい方 ウォーターフォール開発のメリットデメリット知りたい方 社内のIT人材が不足している方 これらに当てはまる方におすすめの記事となっています。これを読めばウォーターフォール開発の進め方や特徴が丸わかりですよ。 (more…)

1 week ago

【必見】AIを活用した高度なデモが製品改善と市場理解にもたらす効果解説

製品やシステムの開発においてデモは、単なる機能紹介ではなく、顧客との信頼構築・製品改善・市場理解のすべてを支える重要なプロセスです。 特にAI技術が進化した現在、従来型のデモ手法では捉えきれない顧客のニーズを可視化し、より精密に対応するための「次世代型デモ」が求められています。 この記事では、DEHAが提供するAI活用型デモソリューション「SmartDemo」を中心に、システムデモの意義とその効果を詳しく解説します。 AIのデモンストレーションが気になる方 デモンストレーションの活用方法が気になる方 これらに当てはまる方におすすめの記事となっています。これを読めばデモがもたらす効果が丸わかりですよ。 (more…)

2 weeks ago

リーンスタートアップ・フレームワークは?基礎知識と実践的な計画の書き方

「リーンスタートアップ」という言葉を耳にしたことがある方も多いのではないでしょうか。 従来のように「時間と資金をかけて完璧な製品を作る」方法では、変化の激しい現代の市場に対応しづらくなっています。 そんな中、少ないリソースで、素早く学び、改善しながら成功確率を高める方法論として注目を集めているのが、リーンスタートアップ・フレームワークです。 この記事では、リーンスタートアップの基本的な考え方から、実際に事業計画へ落とし込むための手順までをわかりやすく解説します。 リーンスタートアップ・フレームワークについて気になる方 事業計画の書き方についてお悩みの方 これらに当てはまる方におすすめの記事となっています。これを読めばリーンスタートアップ・フレームワークの概要がわかるだけでなく、実践方法も丸わかりですよ。 (more…)

3 weeks ago

プロジェクト管理におけるシステム開発ロードマップの必要性、作り方コツ

システム開発の現場では、「納期に間に合わない」「仕様変更が頻発して混乱する」「優先順位が曖昧でチームが迷走する」といった課題が少なくありません。 これらの多くは、プロジェクトの全体像の欠如に起因しています。 開発プロジェクトを成功に導くためには、関係者全員が同じゴールと進行方向を共有することが欠かせません。 そのための強力なツールが「システム開発ロードマップ(Development Roadmap)」です。 そこでこの記事では、ロードマップの必要性、作成の手順、そして実務で役立つコツを詳しく解説します。 システム開発をしたい方 社内のIT人材が不足している方 効率よくプロジェクト管理を行いたい方 これらに当てはまる方におすすめの記事となっています。これを読めばプロジェクト管理のコツがわかりますよ。 システム開発ロードマップとは システム開発ロードマップとは、開発プロジェクトの全体像を時系列で可視化した計画図のことです。単なるスケジュール表ではなく、以下のような情報を統合的にまとめた「戦略的な地図」です。 開発の目的・ゴール 主要なマイルストーン(例:要件定義完了、テスト開始、リリース予定日) フェーズごとの作業内容…

3 weeks ago