AI

生成AIは?従来AIとの違い・種類・できることも紹介

生成AI(Generative AI)は、従来のAIとは異なる手法を用いてデータやコンテンツを生成する技術です。

近年AIが注目される中、生成AIは画像や音楽、文章を生成できるためさまざまな職種で活用していくことが可能です。 

そこでこの記事では生成AIがどんな特徴があるのか、どのような種類があるのかなど徹底解説していきます。

  • 生成AIに興味がある方
  • 社内のIT人材が不足している方
  • 生成AIと従来のAIの違いについて知りたい方

これらに当てはまる方におすすめの記事となっています。これを読めば生成AIの特徴がわかるのはもちろん、どういう風に活用していけば良いかなども丸わかりですよ。

生成AIと従来のAIの違い

従来のAI

従来のAIは、大量のデータを学習し、そのパターンを認識・予測することに主に使用されてきました。

具体的なタスクに特化したアルゴリズムを使用し、データから特徴を抽出して解析することで、分類、予測、意思決定などのタスクを実行します。

生成AI

生成AI(Generative AI)は、機械学習の分野で、新しいデータやコンテンツを生成する技術です。

従来のAIはデータからパターンを学習して予測や分類を行いますが、生成AIはデータを作成することに焦点を当てます。

GANsやVAEsなどのモデルを用い、画像、音楽、文章などの新しいコンテンツを生成します。

この技術は、アート、音楽、エンターテイメント、医療など多岐にわたる分野で革新的な応用が期待されています。

生成AIの種類

Generative Adversarial Networks (GANs)

GANsは、2つのニューラルネットワークで構成され、互いに競い合う仕組みです。

1つのネットワークがデータを生成し、もう1つのネットワークがそれを評価します。

これにより、本物のデータと区別できないような偽のデータが生成されます。

Variational Autoencoders (VAEs)

Variational Autoencoders(VAEs)は、生成モデルの一種であり、データを効率的に表現し、新しいデータを生成するための確率的潜在空間を学習します。VAEsは、エンコーダーとデコーダーという2つのニューラルネットワークから構成されます。

エンコーダーは、入力データを潜在空間にマッピングし、そこから確率的な潜在変数(潜在表現)を生成します。デコーダーは、この潜在変数を使用して、元のデータを再構築します。

訓練時には、VAEsは入力データを再現する能力と、潜在空間でのデータの連続性を学習します。

これにより、潜在空間内での操作や新しいデータの生成が可能となります。

VAEsは、画像生成、音楽生成、異常検知などの領域で幅広く応用され、高次元のデータを効果的に処理する手法として重要性を増しています。

Transformers

Transformersは、自然言語処理(NLP)や画像生成などの様々なタスクに使用される深層学習モデルの一種です。

従来のリカレントニューラルネットワーク(RNN)や畳み込みニューラルネットワーク(CNN)とは異なり、セルフアテンションメカニズムを使用しており、長距離の依存関係を効率的に処理します。

Transformerモデルは、複数のエンコーダーとデコーダー層から構成され、入力シーケンスから潜在表現を抽出し、出力シーケンスを生成します。

BERT(Bidirectional Encoder Representations from Transformers)、GPT(Generative Pre-trained Transformer)、BERTの派生モデルなど、多くの派生バージョンが存在し、言語モデリング、文章生成、機械翻訳、質問応答システムなどのNLPタスクで優れた性能を示しています。

また、ビジョンタスクにおいても、画像キャプショニングや画像生成などで利用され、幅広い領域で革新的な成果を生み出しています。

Transformersの登場により、自然言語処理や機械学習の分野における最先端の技術として注目を集めています。

生成AIができること

画像生成

GANsやVAEsを使用して、リアルな画像やイラストを生成することができます。これは、芸術的な表現やデザイン、医療画像の生成などに活用されます。

画像生成技術は、画像のスタイルを変換することも可能です。例えば、有名な画家のスタイルで写真を描いたり、写真を絵画風に変換したりすることも可能です。

さらに特定の条件や制約の下で画像を生成することができます。例えば、特定の顔の表情を指定したり、特定のスタイルでの画像生成を行ったりすることも可能。

生成AIを利用して、既存のデータセットを拡張し、新しいデータを生成することで、機械学習モデルのトレーニングデータを増やすことができます。

音楽・メロディの生成

生成AIは、過去の音楽データを学習し、新しい楽曲を作曲することができます。これにより、様々なジャンルやスタイルの楽曲を自動生成すること可能。さらに特定の作曲家や楽曲のスタイルで新しいメロディを生成することも。

例えば、ベートーヴェン風のメロディやジャズ風の楽曲など、特定のスタイルに合わせて作曲することができます。

さらにAIは音楽理論に基づき、メロディの構造化や調和に関するルールを適用し、メロディや和声の生成を行います。これにより、洗練された楽曲を生成することが可能です。

これらの能力により、生成AIは音楽制作、作曲、音楽教育などの分野で革新的な役割を果たしています。音楽の創造性を高め、新しい音楽の制作や表現に貢献しています。

文章や文章の要約

自然言語生成モデルを使用して、与えられたテキストや指示に基づいて、自然で流暢な文章を生成することができます。これにより、論文、小説、ニュース記事など、さまざまなジャンルの文章を自動生成することが可能です。

さらに長文を要約もできるため、情報を効率的に伝えることができます。

その他、多言語対応のモデルもあり、複数の言語で文章生成や要約が可能です。これは、翻訳や異なる言語間での情報共有に役立ちます。

顔やキャラクターの生成

生成AIは、顔やキャラクターの生成においても驚くべき進歩を遂げています。GANsやVAEsを用いた生成AIは、リアルな顔の画像を生成できます。これにより、さまざまな顔の特徴や表情を持つ人物の画像を自動的に生成することが可能です。

さらに顔だけでなく、ファンタジー、アニメ、ゲームのキャラクターを生成することも可能です。異なるスタイルや特徴を持つキャラクターを自動的に作成できます。

顔やキャラクターの生成において、生成AIは創造性と多様性を提供し、ゲーム、エンターテイメント、グラフィックデザインなどの分野で幅広く活用されています。

まとめ

いかがでしたか。本日は生成AIに関して従来AIとの違い・種類などを紹介していきました。

生成AIは従来のAIと違い、新しいデータやコンテンツを生成する技術を持っていましたね。

画像やキャラクター、音楽や文章の生成ができるため、ゲーム、エンターテイメント、グラフィックデザインなどさまざまな分野で活用していくことが可能です。

ぜひ生成AIを活用してコンテンツの幅を広げてみてはいかがでしょうか。

makka

Recent Posts

【2026年版】ベトナム デジタル状況、最新動向

2026年のベトナムは、東南アジアの中でも特に「デジタル化が成熟段階に入りつつある国」として注目を集めています。 スマートフォンの普及、ソーシャルメディアの浸透、高速通信インフラの整備、そして若く人口ボーナス期にある社会構造が相まって、デジタル技術はすでに人々の日常生活、経済活動、情報収集の中核となっています。 この記事では、DataReportal「Digital 2026 Vietnam」レポートをもとに、2026年のベトナムにおけるデジタルデバイス、インターネット、ソーシャルメディア、主要プラットフォームの利用状況とその背景、そして今後の方向性について総合的に解説していきます。 ベトナムのデジタルの最新情報が気になる方 社内のIT人材が不足している方 ベトナムのIT人材が気になる方 これらに当てはまる方におすすめの記事となっています。これを読めばベトナムのデジタルの最新情報や動向が丸わかりですよ。 関連記事: 【2024年版】ベトナムのDX市場の状況と動向 2025年のベトナム デジタル状況、最新動向 (more…)

6 days ago

コードを書く時代から「制約」を設計する時代へ

ソフトウェア開発の歴史において、エンジニアの核心的な能力は「コードを書く力」で測られてきました。しかし、AI技術が飛躍的に進歩し、人間よりも速く一貫性のあるコードを生成できるようになった今、その価値の軸が大きくシフトしています。 これからのエンジニアに求められるのは、単なるプログラミングスキルではなく、いかに高度なAI活用を行い、システムに何を許し、何を許さないかという「制約」を正しく設計できるかという点にあります。 (more…)

1 week ago

2026年のクラウド市場シェアと動向【世界及び日本国内】

クラウドコンピューティングは、企業や政府のデジタルトランスフォーメーション(DX)を支える基盤です。 データ保存、アプリケーション実行、AI・データ分析など、あらゆるITインフラがクラウドを通じて提供されるようになった現代において、クラウド市場の動向は企業戦略の要です。 2026年は世界的に5G、AI、IoT(モノのインターネット)、機械学習などがクラウド活用を加速させ、市場全体が大きく成長すると予測されています。 この記事では、2026年のクラウド市場について世界市場の最新シェアや日本国内のクラウド市場シェアとその特徴などを紹介していきます。 企業の IT戦略・DX推進担当者の方 クラウド関連ビジネスに関わる方 これらに当てはまる方におすすめの記事となっています。これを読めば2026年のクラウド市場のシェアやトレンドが丸わかりですよ。 (more…)

1 week ago

2030年までに日本のIT市場はどう変わるのか?

2030年に向けて、日本のIT市場は単なる成長産業ではなく、社会全体を支える基盤(インフラ)としての性格を一層強めていくと考えられます。 背景には、世界規模で進行するデジタル化、AI技術の急速な発展、クラウドサービスの定着、そして日本固有の人口減少・地方分散という社会構造の変化があります。 この記事では、世界のICT市場動向を起点に、日本のソーシャルメディア、メタバース、クラウド、データセンター、情報セキュリティといった分野が、2030年に向けてどのように変化していくのかを多角的に整理していきます。 IT市場の未来が気になる方 AI技術がどのように発展していくか気になる方 これらに当てはまる方におすすめの記事となっています。これを読めば日本のIT市場の未来が丸わかりですよ。 (more…)

1 week ago

【経産省公表】2040年にAI人材326万人不足。デジタル時代を生き抜く「グローバル開発」のおすすめ

日本は2030年代に入ると急激に人口が減少し、労働力全体の供給が縮小するとの構造的な課題を抱えています。 特にデジタル技術の中心となるAI(人工知能)やロボットの開発・利活用を担う人材の不足が深刻になるとの推計が経済産業省の将来試算で示されています。 現在の教育・採用のままでは、2040年にAI・ロボット関連の人材が約326万人不足する可能性があるとされています。 この数字の背景には、生成AIの急速な普及やデジタル技術の社会インフラ化がある一方で、既存の人材供給は追いつかず、求められるスキルとのミスマッチが拡大している実態があります。 この記事では、こうした人材リスクの本質を整理しつつ、デジタル人材減少時代を生き抜く方策として、オフショア(海外)によるグローバル開発チームの構築戦略をご紹介します。 人材不足にお悩みの方 オフショア開発に興味がある方 これらに当てはまる方におすすめの記事となっています。これを読めばデジタル人材減少時代をどう生き抜くかその方法がわかりますよ。 (more…)

3 weeks ago

【製造業におけるIFS活用】統合プロセスによる生産管理自動化の方式とプロセスモデル

近年、製造業はかつてないほどの環境変化に直面しています。 需要変動の激化、多品種少量生産への対応、グローバルサプライチェーンの複雑化、人手不足、原材料価格の高騰など、経営・現場の両面で不確実性が増大しているのです。 このような状況下において、多くの企業が課題として挙げるのが生産管理の属人化・分断化です。 販売計画と生産計画が連動していない 在庫情報がリアルタイムに把握できない 工程進捗が見えず、計画変更が後手に回る システムは導入しているが、Excelや紙運用が残っている これらの問題は、部分最適なシステム導入や、部門ごとに分断された業務プロセスによって引き起こされることが多いです。 こうした背景の中で注目されているのが、IFS(Industrial and Financial Systems)を活用した統合型生産管理の自動化。 この記事では、IFSの特長を踏まえながら、製造業における生産管理自動化の方式と、それを支えるプロセスモデルについて詳しく解説していきます。 (more…)

1 month ago