「AI技術を使って開発を行いたいけど、初めてで不安。」
「AI外注ってどのような流れで行うの?」
そんな不安やお悩みをお持ちではないでしょうか。通常の開発と比べ、AI開発はAIに学習をさせたりと特殊な対応が必要です。
そこで今回はAI開発を外注する際の流れについて解説していこうと思います。
これらに当てはまる方におすすめの記事となっています。これを読めばAI開発がどのような流れで行われているのかはもちろん、そもそもAI開発とは何なのかまで丸わかりですよ。
AI開発とはAI(人工知能)の技術を活用したソフトウェア開発のことで、顔認証システムなどがあります。
AIは大きく3種類に分類され、人間の思考をプログラムで模倣したソフトウェア全般のことをAI、2000年代以降に登場したのがマシンラーニング、マシンラーニングをさらに発展させたものがディープランニングです。
マシンラーニングはAIに大量の学習データを与え、データ内の特徴やパターンを抽出させる技術です。
一方ディープラーニングではニュートラルネットワークという人間の脳の仕組みを真似した技術が利用されています。
この3つの関係はAI>マシンラーニング>ディープラーニングとも表現することができ、AIの知能を進化させるために学習し続けるマシンラーニング、そしてより詳しく学習するための技術としてディープラーニングがあると言えます。
AI開発を外注する場合、主に以下の流れで行います。
それぞれ詳しくみていきましょう。
依頼企業がどういった課題をどういう風に解決していきたいのか、要望や課題をヒアリングします。
場合によってはAI以外の手法が適していることもあるので、開発経験を踏まえて適切なアイディアを提供しています。
ヒアリングでAI開発の実現性を確認後、実際のAIモデルを用いた実証実験を行います。
いきなり本番環境で制作するのではなく、構想段階で固まった仕様をもとにプロトタイプを制作・テストを行い、課題の洗い出しと調整を行います。
サービスの精度向上のために、マシンラーニングやディープランニングを活用し、AIモデルの構築・実装を行います。
実装後も新しいテストデータを利用した試験を行い、高い精度が得られるまで検証を繰り返します。
このような実装と検証を繰り返す開発ではアジャイル開発がおすすめです。
アジャイル開発とは業務を2週間程度の短期間で実行可能な小単位に分け、業務のプロセスの優先度を考えて、開発順番を決定する開発手法です。
変更があったとしても対応しやすくスピーディーな開発が実現します。
サービスのリリース後も定期的にAIモデルの精度をチェックしていきます。AIは様々なデータを分析するうちに精度が低下してしまうことがあります。
そのような場合、追加学習をさせ精度を向上させる必要が出てきます。AIが誤認したデータを解析して、新たに学習用データを与えたり、逆に精度低下の要因となるデータを削除させたりなどといった対応が必要になります。
ベトナム人エンジニアはAIやブロックチェーンなど、最新技術に強い若いエンジニアが多いのが特徴なため、DEHAソリューションズでは様々なAIの開発実績があります。
オンライン本人確認の機能をモバイルアプリで実装しました。公開鍵により署名検証することで精度の高い身分証明の真正性の確認が可能に。
OCR処理により、券面情報をテキストで抽出することができる為、入力業務を効率化することが可能。
在留外国人向けのサービスであるため、多言語に対応しています。
AI技術による顔認証システムで社員を判別し、データベースと連携し出退勤の打刻を自動化するシステムです。
他の従業員が本人の代わりにタイムカードを押す不正を防止。また、給与計算のためにタイムカードの情報を転記する際のミスや手間をなくし、業務の効率化が実現します。
いかがでしたか。本日はAI開発を外注する際の流れについて詳しくみていきました。
AI外注の流れは以下の通りでしたね。
作りたいプロダクトやサービスに本当にAIが必要なのかも含めて、外注する際は外注先の企業とのヒアリングをしっかり行うようにしましょう。
DEHAソリューションズでも数多くのAI開発の実績があります。オフショア開発によって人件費を抑えることが可能です。
具体的な費用面や、エンジニアの質など気になる方はぜひお気軽にお問い合わせください。
ソフトウェア開発の世界において、「技術的負債(Technical Debt)」という言葉は数十年前から馴染みのある概念です。スピードを優先した不適切なコードや設計が、将来的に修正コストやバグの増大を招くことは、エンジニアやマネージャーにとって共通認識となっています。 しかし、AI活用が急速に進む現代において、技術的負債よりもはるかに深刻で、目に見えにくい新たなリスクが蓄積されつつあります。それが制約の負債(Constraint Debt)」です。 本記事では、最新テクノロジーの実装において見落とされがちなこの概念と、その対策について解説します。 (more…)
国内IT人材不足、円安の長期化、開発スピードへの要求高度化。 こうした環境変化の中で、オフショア開発は一時的な選択肢ではなく、日本企業の開発戦略における「前提条件」となりつつあります。 本記事では、2025年に実施された各種調査データを基にした『オフショア開発白書』の内容を整理しながら、2026年に向けたオフショア開発市場の動向を読み解いていきます。 オフショア開発に興味がある方 開発効率を上げたい方 社内のIT人材が不足している方 これらに当てはまる方におすすめの記事となっています。これを読めばオフショア開発の最新の動向が丸わかりですよ。キーワードは「拡大」「成熟」「戦略化」です。 関連記事: 【2025年】『オフショア開発白書』から見る市場動向 【2024年版】オフショア開発国のランキング|委託先国の特徴とは? 【2023年版】オフショア開発白書から読みとくオフショア開発の現状と最新の市場動向 (more…)
2026年のベトナムは、東南アジアの中でも特に「デジタル化が成熟段階に入りつつある国」として注目を集めています。 スマートフォンの普及、ソーシャルメディアの浸透、高速通信インフラの整備、そして若く人口ボーナス期にある社会構造が相まって、デジタル技術はすでに人々の日常生活、経済活動、情報収集の中核となっています。 この記事では、DataReportal「Digital 2026 Vietnam」レポートをもとに、2026年のベトナムにおけるデジタルデバイス、インターネット、ソーシャルメディア、主要プラットフォームの利用状況とその背景、そして今後の方向性について総合的に解説していきます。 ベトナムのデジタルの最新情報が気になる方 社内のIT人材が不足している方 ベトナムのIT人材が気になる方 これらに当てはまる方におすすめの記事となっています。これを読めばベトナムのデジタルの最新情報や動向が丸わかりですよ。 関連記事: 【2024年版】ベトナムのDX市場の状況と動向 2025年のベトナム デジタル状況、最新動向 (more…)
ソフトウェア開発の歴史において、エンジニアの核心的な能力は「コードを書く力」で測られてきました。しかし、AI技術が飛躍的に進歩し、人間よりも速く一貫性のあるコードを生成できるようになった今、その価値の軸が大きくシフトしています。 これからのエンジニアに求められるのは、単なるプログラミングスキルではなく、いかに高度なAI活用を行い、システムに何を許し、何を許さないかという「制約」を正しく設計できるかという点にあります。 (more…)
クラウドコンピューティングは、企業や政府のデジタルトランスフォーメーション(DX)を支える基盤です。 データ保存、アプリケーション実行、AI・データ分析など、あらゆるITインフラがクラウドを通じて提供されるようになった現代において、クラウド市場の動向は企業戦略の要です。 2026年は世界的に5G、AI、IoT(モノのインターネット)、機械学習などがクラウド活用を加速させ、市場全体が大きく成長すると予測されています。 この記事では、2026年のクラウド市場について世界市場の最新シェアや日本国内のクラウド市場シェアとその特徴などを紹介していきます。 企業の IT戦略・DX推進担当者の方 クラウド関連ビジネスに関わる方 これらに当てはまる方におすすめの記事となっています。これを読めば2026年のクラウド市場のシェアやトレンドが丸わかりですよ。 (more…)
2030年に向けて、日本のIT市場は単なる成長産業ではなく、社会全体を支える基盤(インフラ)としての性格を一層強めていくと考えられます。 背景には、世界規模で進行するデジタル化、AI技術の急速な発展、クラウドサービスの定着、そして日本固有の人口減少・地方分散という社会構造の変化があります。 この記事では、世界のICT市場動向を起点に、日本のソーシャルメディア、メタバース、クラウド、データセンター、情報セキュリティといった分野が、2030年に向けてどのように変化していくのかを多角的に整理していきます。 IT市場の未来が気になる方 AI技術がどのように発展していくか気になる方 これらに当てはまる方におすすめの記事となっています。これを読めば日本のIT市場の未来が丸わかりですよ。 (more…)