オフショア開発

AI開発の外注の流れをご紹介【AIに強いオフショア会社が解説】

「AI技術を使って開発を行いたいけど、初めてで不安。」

「AI外注ってどのような流れで行うの?」

そんな不安やお悩みをお持ちではないでしょうか。通常の開発と比べ、AI開発はAIに学習をさせたりと特殊な対応が必要です。

そこで今回はAI開発を外注する際の流れについて解説していこうと思います。

  • AI開発の流れについて知りたい方
  • AIを使って開発を行いたい方
  • 初めてAI開発を行う方

これらに当てはまる方におすすめの記事となっています。これを読めばAI開発がどのような流れで行われているのかはもちろん、そもそもAI開発とは何なのかまで丸わかりですよ。

AI開発とは

AI開発とはAI(人工知能)の技術を活用したソフトウェア開発のことで、顔認証システムなどがあります。

AIは大きく3種類に分類され、人間の思考をプログラムで模倣したソフトウェア全般のことをAI、2000年代以降に登場したのがマシンラーニング、マシンラーニングをさらに発展させたものがディープランニングです。

マシンラーニングはAIに大量の学習データを与え、データ内の特徴やパターンを抽出させる技術です。

一方ディープラーニングではニュートラルネットワークという人間の脳の仕組みを真似した技術が利用されています。

この3つの関係はAI>マシンラーニング>ディープラーニングとも表現することができ、AIの知能を進化させるために学習し続けるマシンラーニング、そしてより詳しく学習するための技術としてディープラーニングがあると言えます。

AI開発の外注の流れ

AI開発を外注する場合、主に以下の流れで行います。

  1. ヒアリング
  2. PoC開発
  3. AIモデルの構築・実装
  4. 保守運用・改善

それぞれ詳しくみていきましょう。

ヒアリング

依頼企業がどういった課題をどういう風に解決していきたいのか、要望や課題をヒアリングします。

場合によってはAI以外の手法が適していることもあるので、開発経験を踏まえて適切なアイディアを提供しています。

PoC開発

ヒアリングでAI開発の実現性を確認後、実際のAIモデルを用いた実証実験を行います。

いきなり本番環境で制作するのではなく、構想段階で固まった仕様をもとにプロトタイプを制作・テストを行い、課題の洗い出しと調整を行います。

AIモデルの構築・実装

サービスの精度向上のために、マシンラーニングやディープランニングを活用し、AIモデルの構築・実装を行います。

実装後も新しいテストデータを利用した試験を行い、高い精度が得られるまで検証を繰り返します。

このような実装と検証を繰り返す開発ではアジャイル開発がおすすめです。

アジャイル開発とは業務を2週間程度の短期間で実行可能な小単位に分け、業務のプロセスの優先度を考えて、開発順番を決定する開発手法です。

変更があったとしても対応しやすくスピーディーな開発が実現します。

保守運用・改善

サービスのリリース後も定期的にAIモデルの精度をチェックしていきます。AIは様々なデータを分析するうちに精度が低下してしまうことがあります。

そのような場合、追加学習をさせ精度を向上させる必要が出てきます。AIが誤認したデータを解析して、新たに学習用データを与えたり、逆に精度低下の要因となるデータを削除させたりなどといった対応が必要になります。

AI開発の事例

ベトナム人エンジニアはAIやブロックチェーンなど、最新技術に強い若いエンジニアが多いのが特徴なため、DEHAソリューションズでは様々なAIの開発実績があります。

金融ベンチャーのDX支援(eKYC導入支援)

オンライン本人確認の機能をモバイルアプリで実装しました。公開鍵により署名検証することで精度の高い身分証明の真正性の確認が可能に。

OCR処理により、券面情報をテキストで抽出することができる為、入力業務を効率化することが可能。

在留外国人向けのサービスであるため、多言語に対応しています。

顔認証技術を活用した勤怠管理システムの開発

AI技術による顔認証システムで社員を判別し、データベースと連携し出退勤の打刻を自動化するシステムです。

他の従業員が本人の代わりにタイムカードを押す不正を防止。また、給与計算のためにタイムカードの情報を転記する際のミスや手間をなくし、業務の効率化が実現します。

まとめ

いかがでしたか。本日はAI開発を外注する際の流れについて詳しくみていきました。

AI外注の流れは以下の通りでしたね。

  • ヒアリング
  • PoC開発
  • AIモデルの構築・実装
  • 保守運用・改善

作りたいプロダクトやサービスに本当にAIが必要なのかも含めて、外注する際は外注先の企業とのヒアリングをしっかり行うようにしましょう。

DEHAソリューションズでも数多くのAI開発の実績があります。オフショア開発によって人件費を抑えることが可能です。

具体的な費用面や、エンジニアの質など気になる方はぜひお気軽にお問い合わせください。

makka

Recent Posts

【2026年版】ベトナム デジタル状況、最新動向

2026年のベトナムは、東南アジアの中でも特に「デジタル化が成熟段階に入りつつある国」として注目を集めています。 スマートフォンの普及、ソーシャルメディアの浸透、高速通信インフラの整備、そして若く人口ボーナス期にある社会構造が相まって、デジタル技術はすでに人々の日常生活、経済活動、情報収集の中核となっています。 この記事では、DataReportal「Digital 2026 Vietnam」レポートをもとに、2026年のベトナムにおけるデジタルデバイス、インターネット、ソーシャルメディア、主要プラットフォームの利用状況とその背景、そして今後の方向性について総合的に解説していきます。 ベトナムのデジタルの最新情報が気になる方 社内のIT人材が不足している方 ベトナムのIT人材が気になる方 これらに当てはまる方におすすめの記事となっています。これを読めばベトナムのデジタルの最新情報や動向が丸わかりですよ。 関連記事: 【2024年版】ベトナムのDX市場の状況と動向 2025年のベトナム デジタル状況、最新動向 (more…)

7 days ago

コードを書く時代から「制約」を設計する時代へ

ソフトウェア開発の歴史において、エンジニアの核心的な能力は「コードを書く力」で測られてきました。しかし、AI技術が飛躍的に進歩し、人間よりも速く一貫性のあるコードを生成できるようになった今、その価値の軸が大きくシフトしています。 これからのエンジニアに求められるのは、単なるプログラミングスキルではなく、いかに高度なAI活用を行い、システムに何を許し、何を許さないかという「制約」を正しく設計できるかという点にあります。 (more…)

1 week ago

2026年のクラウド市場シェアと動向【世界及び日本国内】

クラウドコンピューティングは、企業や政府のデジタルトランスフォーメーション(DX)を支える基盤です。 データ保存、アプリケーション実行、AI・データ分析など、あらゆるITインフラがクラウドを通じて提供されるようになった現代において、クラウド市場の動向は企業戦略の要です。 2026年は世界的に5G、AI、IoT(モノのインターネット)、機械学習などがクラウド活用を加速させ、市場全体が大きく成長すると予測されています。 この記事では、2026年のクラウド市場について世界市場の最新シェアや日本国内のクラウド市場シェアとその特徴などを紹介していきます。 企業の IT戦略・DX推進担当者の方 クラウド関連ビジネスに関わる方 これらに当てはまる方におすすめの記事となっています。これを読めば2026年のクラウド市場のシェアやトレンドが丸わかりですよ。 (more…)

1 week ago

2030年までに日本のIT市場はどう変わるのか?

2030年に向けて、日本のIT市場は単なる成長産業ではなく、社会全体を支える基盤(インフラ)としての性格を一層強めていくと考えられます。 背景には、世界規模で進行するデジタル化、AI技術の急速な発展、クラウドサービスの定着、そして日本固有の人口減少・地方分散という社会構造の変化があります。 この記事では、世界のICT市場動向を起点に、日本のソーシャルメディア、メタバース、クラウド、データセンター、情報セキュリティといった分野が、2030年に向けてどのように変化していくのかを多角的に整理していきます。 IT市場の未来が気になる方 AI技術がどのように発展していくか気になる方 これらに当てはまる方におすすめの記事となっています。これを読めば日本のIT市場の未来が丸わかりですよ。 (more…)

1 week ago

【経産省公表】2040年にAI人材326万人不足。デジタル時代を生き抜く「グローバル開発」のおすすめ

日本は2030年代に入ると急激に人口が減少し、労働力全体の供給が縮小するとの構造的な課題を抱えています。 特にデジタル技術の中心となるAI(人工知能)やロボットの開発・利活用を担う人材の不足が深刻になるとの推計が経済産業省の将来試算で示されています。 現在の教育・採用のままでは、2040年にAI・ロボット関連の人材が約326万人不足する可能性があるとされています。 この数字の背景には、生成AIの急速な普及やデジタル技術の社会インフラ化がある一方で、既存の人材供給は追いつかず、求められるスキルとのミスマッチが拡大している実態があります。 この記事では、こうした人材リスクの本質を整理しつつ、デジタル人材減少時代を生き抜く方策として、オフショア(海外)によるグローバル開発チームの構築戦略をご紹介します。 人材不足にお悩みの方 オフショア開発に興味がある方 これらに当てはまる方におすすめの記事となっています。これを読めばデジタル人材減少時代をどう生き抜くかその方法がわかりますよ。 (more…)

3 weeks ago

【製造業におけるIFS活用】統合プロセスによる生産管理自動化の方式とプロセスモデル

近年、製造業はかつてないほどの環境変化に直面しています。 需要変動の激化、多品種少量生産への対応、グローバルサプライチェーンの複雑化、人手不足、原材料価格の高騰など、経営・現場の両面で不確実性が増大しているのです。 このような状況下において、多くの企業が課題として挙げるのが生産管理の属人化・分断化です。 販売計画と生産計画が連動していない 在庫情報がリアルタイムに把握できない 工程進捗が見えず、計画変更が後手に回る システムは導入しているが、Excelや紙運用が残っている これらの問題は、部分最適なシステム導入や、部門ごとに分断された業務プロセスによって引き起こされることが多いです。 こうした背景の中で注目されているのが、IFS(Industrial and Financial Systems)を活用した統合型生産管理の自動化。 この記事では、IFSの特長を踏まえながら、製造業における生産管理自動化の方式と、それを支えるプロセスモデルについて詳しく解説していきます。 (more…)

1 month ago