deha magazine / オフショア開発
オフショア開発
【経産省公表】2040年にAI・ロボット人材が326万人不足 デジタル人材減少時代を生き抜く「オフショアによるグローバル開発チーム」の構築
日本は2030年代に入ると急激に人口が減少し、労働力全体の供給が縮小するとの構造的な課題を抱えています。 特にデジタル技術の中心となるAI(人工知能)やロボットの開発・利活用を担う人材の不足が深刻になるとの推計が経済産業省の将来試算で示されています。 現在の教育・採用のままでは、2040年にAI・ロボット関連の人材が約326万人不足する可能性があるとされています。 この数字の背景には、生成AIの急速な普及やデジタル技術の社会インフラ化がある一方で、既存の人材供給は追いつかず、求められるスキルとのミスマッチが拡大している実態があります。 この記事では、こうした人材リスクの本質を整理しつつ、デジタル人材減少時代を生き抜く方策として、オフショア(海外)によるグローバル開発チームの構築戦略をご紹介します。 これらに当てはまる方におすすめの記事となっています。これを読めばデジタル人材減少時代をどう生き抜くかその方法がわかりますよ。
続きを読む >>
【製造業におけるIFS活用】統合プロセスによる生産管理自動化の方式とプロセスモデル
近年、製造業はかつてないほどの環境変化に直面しています。 需要変動の激化、多品種少量生産への対応、グローバルサプライチェーンの複雑化、人手不足、原材料価格の高騰など、経営・現場の両面で不確実性が増大しているのです。 このような状況下において、多くの企業が課題として挙げるのが生産管理の属人化・分断化です。 これらの問題は、部分最適なシステム導入や、部門ごとに分断された業務プロセスによって引き起こされることが多いです。 こうした背景の中で注目されているのが、IFS(Industrial and Financial Systems)を活用した統合型生産管理の自動化。 この記事では、IFSの特長を踏まえながら、製造業における生産管理自動化の方式と、それを支えるプロセスモデルについて詳しく解説していきます。
続きを読む >>
IFSオフショアサービスの最適解|ベトナムから提供する高品質・高効率なアジャイルの開発体制確保
近年、製造業、エンジニアリング業、エネルギー、サービス業を中心に、ERPパッケージ「IFS」の導入・活用が急速に進んでいます。 IFSは、EAM(設備資産管理)、FSM(フィールドサービス管理)、製造、サプライチェーン、プロジェクト管理など、現場業務に強いERPとして評価されており、グローバル展開を前提とした柔軟なアーキテクチャを特徴としています。 一方で、IFS導入プロジェクトやその後の保守・改修フェーズにおいて、以下のような課題を抱える企業も少なくありません。
続きを読む >>
失敗しないIFS導入のため、プロジェクト成功に不可欠な「プロセス品質保証」の重要性と具体的な手法
IFS ERPは、製造業・エンジニアリング業・サービス業・エネルギー業界など、アセット集約型・プロジェクト型ビジネスに強みを持つERPとして高く評価されています。 一方で、「IFS導入は難易度が高い」「プロジェクトが長期化しやすい」といった声が聞かれるのも事実です。 しかし、その原因はIFS ERPそのものにあるわけではありません。多くのケースで問題となるのは、導入プロジェクトにおける“進め方”や“管理の仕組み”です。 特に、要件定義から設計・開発・テスト・本番移行に至るまでの各工程で、プロセスの品質をどのように担保するかが成否を大きく左右します。 そこで重要となるのが「プロセス品質保証(Process Quality Assurance)」です。 この記事では、IFS導入を成功に導くために不可欠なプロセス品質保証の考え方と、その具体的な手法について詳しく解説します。 これらに当てはまる方におすすめの記事となっています。これを読めばIFS導入の具体的な方法が丸わかりですよ。
続きを読む >>
【DX推進のカギ】IFS ERPで実現する業務プロセス自動化と生産性最大化
「DXを進めること」が当たり前となった一方で、期待した成果が出ていないと感じている企業は少なくありません。 ITツールを導入しても業務は属人化したまま、部門間の連携も不十分で、生産性向上につながらないケースが多く見られます。 本来DXとは、単なるデジタル化ではなく、業務プロセスを見直し、データを経営価値へと変える取り組みです。そのためには、全社の業務を横断的に支える基盤が欠かせません。 IFS ERPは、業務プロセス中心の設計と高い柔軟性により、業務プロセス自動化と可視化を実現し、生産性最大化を支援します。 この記事では、DX推進の課題を整理しながら、IFS ERPが果たす役割とその価値を解説していきます。
続きを読む >>
IFS ERPとは?導入前に知っておくべき特徴・業務プロセス・メリットを徹底解説
近年、製造業・建設業・エンジニアリング企業では、複雑化する生産プロセスや高度化する顧客要求に対応するため、ERP(Enterprise Resource Planning)の導入が急速に進んでいます。 ERPとは、企業のさまざまな情報や業務を一元的に管理するための基幹システムの総称であり、経営資源を最適に活用しながら生産性を向上させ、企業競争力を高めるための中心的なツールです。 その中でも、IFS ERPは国際的に高い評価を受けており、特に製造業・設備保守業(EAM)・プロジェクト型産業に強みを持つERPとして知られています。 モジュール構成の柔軟性、ユーザーインターフェイスの使いやすさ、そしてクラウド・オンプレミスの双方に対応できる拡張性を兼ね備え、多様な企業に適応できる点が大きな特徴です。 この記事では、画像資料として提示された「IFS導入サービス」「工場調査プロセス」「GAP分析」「開発プロセス」「アジャイル開発体制」などの情報をもとに、IFS ERPの全体像、導入ステップ、具体的なメリットを総合的に解説します。 これらに当てはまる方におすすめの記事になっております。これを読めばIFS導入について具体的な方法がわかりますよ。
続きを読む >>
プロジェクト品質管理サービスとは?重要性とプロセスを解説
近年、システム開発・建設・製造・マーケティングなど、あらゆる分野でプロジェクトの複雑化が進んでいます。 市場の変化は速く、顧客の期待値も高まり続けるなか、企業に求められるのは「限られたコストと期間で、高い品質を確保した成果物を提供すること」です。 しかし実際には、品質のばらつき、手戻り、要件の理解不足、工程管理の不徹底などにより、多くのプロジェクトが計画どおりに進まず、結果的にコスト増や納期遅延という課題を抱えています。 こうした背景から注目されているのが プロジェクト品質管理サービス です。専門家による品質管理プロセスの整備・運用支援を通じて、プロジェクト全体の成功確率を高めるサービスとして、大企業から中小企業まで導入が広がっています。 この記事では、プロジェクト品質管理サービスの概要、必要性、導入メリット、サービス内容、実際の運用プロセスまでを詳しく解説します。 これらに当てはまる方におすすめの記事になっています。これを読めば、品質問題で悩んでいる組織やプロジェクトリーダーにとって、具体的な改善ヒントとなる内容がわかりますよ。
続きを読む >>
生成AIチャットボットは?従来のチャットボットの違い
近年、企業や教育機関、自治体を中心に「生成AIチャットボット」の導入が一気に広がっています。 ChatGPTをはじめとする大規模言語モデル(LLM)が急速に発展したことで、これまでのチャットボットでは実現できなかった高度な対話や柔軟な問題解決が可能になりました。 しかし、「生成AIチャットボット」と「従来型のチャットボット」は何が違うのか、具体的に説明できる人は意外と多くありません。 本記事では、両者の仕組みや特性、メリット・デメリット、そして導入時のポイントまで分かりやすく解説しています。 これらに当てはまる方におすすめの記事となっています。これを読めば生成AIチャットボットが、従来と比べてどう違うのかが丸わかりですよ。
続きを読む >>
AI活用でコーディングが効率化し、開発のスピード3倍アップ
いま、ソフトウェア開発の現場で“静かな革命”が起きています。それは、AIがエンジニアの相棒としてコーディングを支援する時代の到来です。 「AIがコードを書くなんて、まだ先の話」と思われていたのはもう過去のこと。今ではAIが自然言語での指示を理解し、数秒でプログラムを提案・修正してくれるのが当たり前になりました。 その結果、開発スピードが従来の3倍に向上したという事例も続々と報告されています。 この記事では、AIがどのようにしてコーディングを効率化し、開発現場を変えているのかを具体的に解説します。 これらに当てはまる方におすすめの記事となっています。これを読めばコーディングにAIを活用する方法が丸わかりですよ。
続きを読む >>
要件定義フェーズをAI活用で解決する7つの問題と解決案
システム開発において最も重要であり、同時に最も難しい工程は何でしょうか。 多くのプロジェクトで共通して挙げられるのが 「要件定義」 です。 要求が曖昧なままプロジェクトが進むと、後工程での手戻りが一気に増え、QCD(品質・コスト・納期)は簡単に崩壊します。 実際に、プロジェクトが失敗する原因の6〜7割は、この初期工程である要件定義に起因すると言われています。それほど、要件定義は重要かつリスクの高いフェーズなのです。 しかし近年、AI技術の急速な進化により、従来の要件定義で「時間がかかる」「認識が揃わない」「情報が不足している」といった課題に対し、新たな解決策が生まれています。 この記事では、要件定義フェーズで頻発する7つの課題を取り上げ、それらをAIを活用してどのように改善できるのかを、具体例を交えて解説します。 これらに当てはまる方におすすめの記事となっています。これを読めば要件定義で起こりうる問題とそれを解決する方法がわかりますよ。
